1
|
Tang A, Li C, Feng D, Li A. Deciphering the code of temperature rise on aerobic granular sludge stability: A DSF-c-di-GMP mediated regulatory mechanism. ENVIRONMENTAL RESEARCH 2025; 267:120705. [PMID: 39732421 DOI: 10.1016/j.envres.2024.120705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/08/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Diffusible signal factor (DSF)-c-di-GMP-mediated strategies have been proposed as an effective regulatory approach for signal molecules in aerobic granular sludge (AGS). The increase in temperature from low to normal levels had a significant impact on AGS stability. In this study, two reactors were established to investigate the effects of different temperature rise modes (abrupt or gradual) on AGS stability. Following the temperature rise, the DSF concentration in Reactor 1 (R1, abrupt) rose nearly fourfold by day 125, while LB-EPS levels decreased by 70%. In contrast, in Reactor 2 (R2, gradual), the DSF concentration increased by only twofold, and TB-EPS levels decreased by 25%. Flavobacterium (R1: 3.64%→0.41%, R2: 3.70%→1.97%) and Thauera (R1: 28.62%→4.01%, R2: 27.56%→13.10%), which are associated with EPS and signal molecule production, exhibited significantly different trends in response to the different temperature rise modes. Batch experiments exhibited that the exogenous addition of DSF and the DSF inhibitor, salicylic acid (SA), can regulate EPS content by altering the concentration of signaling molecules, particularly the LB-EPS, thereby reducing the risk of sludge collapse. These findings offer novel insights into the role of DSF in bacterial communication during AGS formation under temperature rise, providing a basis for regulating AGS formation and stability.
Collapse
Affiliation(s)
- Aiqi Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Chunyan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Donglei Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| |
Collapse
|
2
|
Zhang QH, Wang Z, Wang YQ, Zhao YL, Su HJ. Colorimetric screening model for identification of menaquinone-7 (MK-7) producing strains. 3 Biotech 2024; 14:244. [PMID: 39328501 PMCID: PMC11422327 DOI: 10.1007/s13205-024-04097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, a novel colorimetric screening method for identifying menaquinone-7 (MK-7) producing strains was established using potassium permanganate. To our knowledge, this method represents the first direct screening methodology for the identification of MK-7 producing strains. Utilizing this screening method, a new MK-7 producing strain, Bacillus subtilis GSA-184, was identified from the soil of the Tibetan Plateau. Under the optimized fermentation medium (50 g/L glycerol, 30 g/L yeast extract powder, 100 g/L soybean peptone, 1 g/L KH2PO4, and 1 g/L MnSO4), the production of MK-7 was increased to 25.7 mg/L. Additionally, the maximum production of MK-7 reached 36.46 mg/L after 48 h in a 5-L fermenter. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04097-1.
Collapse
Affiliation(s)
- Qiu-Hua Zhang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Zheng Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yao-Qiang Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Yi-Lin Zhao
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| |
Collapse
|
3
|
Xiong W, Jin Y, Wang Y, Wang S, Chen B, Su H. Novel insights into the biological state in algal-bacterial granular sludge granulation: Armor-like protection provided by the algal barrier. WATER RESEARCH 2024; 262:122087. [PMID: 39024667 DOI: 10.1016/j.watres.2024.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Algal-bacterial granular sludge (ABGS) composed of microalgae and aerobic granular sludge, is a sustainable and promising technology for wastewater treatment. However, the formation mechanism of ABGS has not been clearly defined, and the direct formation of ABGS in saline wastewater has rarely been investigated. This study proposed novel insights into the granulation process of ABGS by assembling the algal barrier, which was successfully cultivated directly in saline wastewater. The results concluded that ABGS with the algal barrier maintained a higher biomass (MLSS of 7046 ± 61 mg/L), larger particle sizes (1.21 ± 0.06 mm), and better settleability (SVI30 of 46 ± 1 mL/g), enabling efficient pollutants removal. Soluble microbial products (SMP) were found to be closely related to the emergence of the algal barrier. In addition, under salinity stress, the high production of extracellular polymeric substances (EPS, 133.70 ± 1.40 mg/g VSS), specifically TB-EPS (90.29 ± 1.12 mg/g VSS), maintained a crucial role in the formation of ABGS. Further analysis indicated that biofilm producing bacteria Pseudofulvimonas and filamentous eukaryote Streptophyta were the key players in ABGS formation with the algal barrier. Furthermore, the enhancement of key genes and enzymes involved in nitrogen metabolism, TCA cycle, and polysaccharide metabolism suggested a more robust protective effect provided by the algal barrier. This study is expected to advance the application of simultaneous ABGS formation and pollutant removal in wastewater.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yaoqiang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Biqiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
4
|
Jin Y, Tian Y, Xiong W, Wang Y, Xiao G, Wang S, Su H. Effects of carrier surface hydrophilic modification on sludge granulation: From sludge characteristics, extracellular polymeric substances, and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124476. [PMID: 38950844 DOI: 10.1016/j.envpol.2024.124476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
Aerobic granular sludge (AGS) is a powerful biotechnological tool capable of treating multiple pollutants simultaneously. However, the granulation process and pollutant removal efficiency still need to be further improved. In this study, Fe2O3- and MnO2-surface-modified straw foam-based AGS (Fe2O3@SF-AGS and MnO2@SF-AGS), with an average particle size of 3 mm, were developed and evaluated. The results showed that surface modification reduced the hydrophobic groups of carriers, facilitating the attachment and proliferation of microorganisms. Notably, MnO2@SF-AGS showed excellent granulation performance, reaching a stable state about one week earlier than the unmodified SF-AGS. The polymeric substance content of MnO2@SF-AGS was found to be 1.28 times higher than that of the control group. Furthermore, the removal rates for NH4+-N, TN, and TP were enhanced by 27.28%, 12.8%, and 32.14%, respectively. The bacterial communities exhibited significant variations in response to different surface modifications of AGS, with genera such as Saprospiraceae, Terrimonas, and Ferruginibacter playing a crucial role in the formation of AGS and the removal of pollutants specifically in MnO2@SF-AGS. The charge transfer of metal ions of MnO2@SF promotes the granulation process and pollutant removal. These results highlight that MnO2@SF-AGS is an effective strategy for improving nitrogen and phosphorus removal efficiency from wastewater.
Collapse
Affiliation(s)
- Yu Jin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Tian
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Wei Xiong
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yaoqiang Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
5
|
Kamal N, Saha AK, Singh E, Pandey A, Bhargava PC. Biodegradation of ciprofloxacin using machine learning tools: Kinetics and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134076. [PMID: 38565014 DOI: 10.1016/j.jhazmat.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.
Collapse
Affiliation(s)
- Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amal Krishna Saha
- Indian Mine Planners and Consultants, GE-61, Rajdanga, Kolkata, West Bengal, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
6
|
Xiong W, Wang S, Zhang Q, Hou Y, Jin Y, Chen B, Su H. Synergistic analysis of performance, microbial community, and metabolism in aerobic granular sludge under polyacrylonitrile microplastics stress. BIORESOURCE TECHNOLOGY 2023; 385:129394. [PMID: 37369317 DOI: 10.1016/j.biortech.2023.129394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Aerobic granular sludge (AGS) has proved to be a promising biotechnology for microplastics wastewater treatment. However, polyacrylonitrile microplastics (PAN MPs), the most widely used plastic in textile materials, have not been investigated. Therefore, the effect of the neglected PAN MPs on AGS at different concentrations (1, 10, and 100 mg/L) was evaluated. The results indicated that PAN MPs with 1 and 10 mg/L concentrations had no obvious effect on granular stability and nutrient removal performance, but greatly promoted the secretion of EPS. Remarkably, the granule structure was severely damaged under 100 mg/L PAN MPs. Moreover, microbial community analysis showed that phylum Proteobacteria played a dominant role in resistance to PAN MPs. Metabolic analysis further revealed that genes related to denitrification pathway (nasA, nirK, nirS and norB) and membrane transport were significantly inhibited under PAN MPs stress. This study may provide additional information on the treatment of microplastics wastewater using AGS.
Collapse
Affiliation(s)
- Wei Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Qiuhua Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yiran Hou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Biqiang Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
7
|
Goswami A, Stein N, Fawzy M, Nasr M, Goel R. Retention and recycling of granules in continuous flow-through system to accomplish denitrification and perchlorate reduction. BIORESOURCE TECHNOLOGY 2023:129367. [PMID: 37394045 DOI: 10.1016/j.biortech.2023.129367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
This study employed a completely anoxic reactor and a gravity-settling design for continuously separating from flocculated biomass and hydraulically recycling granules back to the main reactor. The average chemical oxygen demand (COD) removal in the reactor was 98 %. Average nitrate (NO3--N) and perchlorate (ClO4-) removal efficiencies of 99 % and 74 ± 19 % were observed, respectively. Preferential utilization of NO3- over ClO4- led to COD limiting conditions, which resulted in ClO4- in the effluent. The average granule diameter in continuous flow-through bubble-column (CFB) anoxic granular sludge (AxGS) bioreactor was 6325 ± 2434 µm, and the average SVI30/SVI1 was > 90% throughout its operation. 16s rDNA amplicon sequencing revealed Proteobacteria (68.53% - 88.57%) and Dechloromonas (10.46% - 54.77%) to be the most abundant phylum and genus present in reactor sludge representing the denitrifying and ClO4- reducing microbial community. This work represents a pioneering development of CFB-AxGS bioreactor.
Collapse
Affiliation(s)
- Anjan Goswami
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84102, USA
| | - Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84102, USA
| | - Manal Fawzy
- Department of Environmental Sciences, Alexandria University, Alexandria Governorate 5424041, Egypt
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt; Sanitary Engineering Department, Faculty of Engineering, Alexandria University, P.O. Box 21544, Alexandria, 21526, Egypt
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84102, USA.
| |
Collapse
|