1
|
Ankley P, Mahoney H, Brinkmann M. Xenometabolomics in Ecotoxicology: Concepts and Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8308-8316. [PMID: 40261989 DOI: 10.1021/acs.est.4c13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Nontargeted high-resolution mass spectrometry (HRMS) allows for the characterization of a large fraction of the exposome, i.e., the entirety of chemicals an organism is exposed to, and helps detect important exogenous chemical compounds that could be key drivers of toxicological impact. Along with these chemical compounds occur endogenous metabolites that are essential for the health of the host organism. Chemical compounds derived from the biotransformation of xenobiotics present in the exposome are referred to as the xenometabolome, while endogenous metabolites derived from the host organism are referred to as the endometabolome. Recent advancements in HRMS technology allow for the detection of chemical features of biological and ecological importance in the context of chemical safety assessments with unprecedented sensitivity and resolution. In this perspective, we highlight the application of HRMS-based metabolomics of organisms in the context of ecotoxicology, the complexity of comprehensively characterizing the endometabolome, and distinguishing chemical compounds of the xenometabolome.
Collapse
Affiliation(s)
- Phillip Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 0H5, Canada
| | - Hannah Mahoney
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 0H5, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 0H5, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 1K2, Canada
| |
Collapse
|
2
|
Chen Y, Wang Y, Hidalgo Delgado D, Yu H, Zhao T, Fang M, Huan T. Constructing HairDB to facilitate exposome research using human hair. ENVIRONMENT INTERNATIONAL 2024; 193:109077. [PMID: 39427574 DOI: 10.1016/j.envint.2024.109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
This study introduces HairDB, an online database serving as a comprehensive repository of hair-related chemicals for exposome research. HairDB was created via an integrative approach. It first extracted 4,184 unique hair-related chemicals through text mining of over 34 million PubMed abstracts and 5.2 million PubMed Central articles, followed by manual data checking. HairDB also applied an artificial intelligence-enabled search to discover organic aerosol biomarkers in literature. A set of 768 chemicals used in hair-related products was then curated through a combination of manual searches and data extraction from the Cosmetic Ingredient Database (CosIng) of the European Union. From manually reading review papers, 29 organic aerosol biomarkers were extracted. Furthermore, 3,679 known exposure chemicals extracted from the Toxin and Toxin Target Database (T3DB) were incorporated in HairDB to represent the possible environmental exposures detected on hair surfaces. The comprehensive set of chemicals captured in HairDB represents the current knowledge of what can be found in and on hair. HairDB was constructed as a user-friendly web interface, allowing easy exploration of hair-related chemicals and tailored for annotating mass spectrometry-based hair exposomics data. The development of HairDB marks an important step forward in using hair as a biological matrix for chemical exposure measurement, facilitating the adoption of hair for exposome research. HairDB is publicly available at https://www.hairdb.ca/.
Collapse
Affiliation(s)
- Ying Chen
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Yukai Wang
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - David Hidalgo Delgado
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Huaxu Yu
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Tingting Zhao
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, China
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, 2036 Main Mall, Vancouver V6T 1Z1, BC, Canada.
| |
Collapse
|
3
|
Chang CW, Hsu JY, Hsiao PZ, Sung PS, Liao PC. Optimized analytical strategy based on high-resolution mass spectrometry for unveiling associations between long-term chemical exposome in hair and Alzheimer's disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116955. [PMID: 39213755 DOI: 10.1016/j.ecoenv.2024.116955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Exposure to environmental pollutants or contaminants is correlated with detrimental effects on human health, such as neurodegenerative diseases. Adopting hair as a biological matrix for biomonitoring is a significant innovation, since it can reflect the long-term chemical exposome, spanning months to years. However, only a limited number of studies have developed analytical strategies for profiling the chemical exposome in this heterogeneous biological matrix. In this study, a systematic investigation of the chemical extraction procedure from human hair was conducted, using a design of experiments and a high-resolution mass spectrometry (HRMS)-based suspect screening approach. The PlackettBurman (PB) design was applied to identify the significant variables influencing the number of detected features. Then, a central composite design was implemented to optimize the levels of each identified significant variable. Under the optimal conditions-15-minute pulverization, 25 mg of hair weight, 40 min of sonication, and a sonication temperature of 35 °C-approximately 32,000 and 15,000 aligned features were detected in positive and negative ion modes, respectively. This optimized analytical procedure was applied to hair samples from patients with Alzheimer's disease (AD) and individuals with normal cognitive function. Overall, 307 chemicals were identified using the suspect screening approach, with 37 chemicals differentiating patients with AD from controls. This study not only optimized an analytical procedure for characterizing the long-term chemical exposome in human hair but also explored the associations between AD and environmental factors.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ping-Zu Hsiao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
4
|
Lefèvre-Arbogast S, Chaker J, Mercier F, Barouki R, Coumoul X, Miller GW, David A, Samieri C. Assessing the contribution of the chemical exposome to neurodegenerative disease. Nat Neurosci 2024; 27:812-821. [PMID: 38684891 DOI: 10.1038/s41593-024-01627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Over the past few decades, numerous environmental chemicals from solvents to pesticides have been suggested to be involved in the development and progression of neurodegenerative diseases. Most of the evidence has accumulated from occupational or cohort studies in humans or laboratory research in animal models, with a range of chemicals being implicated. What has been missing is a systematic approach analogous to genome-wide association studies, which have identified dozens of genes involved in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. Fortunately, it is now possible to study hundreds to thousands of chemical features under the exposome framework. This Perspective explores how advances in mass spectrometry make it possible to generate exposomic data to complement genomic data and thereby better understand neurodegenerative diseases.
Collapse
Affiliation(s)
- S Lefèvre-Arbogast
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - J Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - F Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - R Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, Paris, France
| | - X Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, Paris, France
| | - G W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - A David
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - C Samieri
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France.
| |
Collapse
|
5
|
Chang CW, Hsu JY, Lo YT, Liu YH, Mee-inta O, Lee HT, Kuo YM, Liao PC. Characterization of Hair Metabolome in 5xFAD Mice and Patients with Alzheimer's Disease Using Mass Spectrometry-Based Metabolomics. ACS Chem Neurosci 2024; 15:527-538. [PMID: 38269400 PMCID: PMC10853927 DOI: 10.1021/acschemneuro.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Hair emerged as a biospecimen for long-term investigation of endogenous metabolic perturbations, reflecting the chemical composition circulating in the blood over the past months. Despite its potential, the use of human hair for metabolomics in Alzheimer's disease (AD) research remains limited. Here, we performed both untargeted and targeted metabolomic approaches to profile the key metabolic pathways in the hair of 5xFAD mice, a widely used AD mouse model. Furthermore, we applied the discovered metabolites to human subjects. Hair samples were collected from 6-month-old 5xFAD mice, a stage marked by widespread accumulation of amyloid plaques in the brain, followed by sample preparation and high-resolution mass spectrometry analysis. Forty-five discriminatory metabolites were discovered in the hair of 6-month-old 5xFAD mice compared to wild-type control mice. Enrichment analysis revealed three key metabolic pathways: arachidonic acid metabolism, sphingolipid metabolism, and alanine, aspartate, and glutamate metabolism. Among these pathways, six metabolites demonstrated significant differences in the hair of 2-month-old 5xFAD mice, a stage prior to the onset of amyloid plaque deposition. These findings suggest their potential involvement in the early stages of AD pathogenesis. When evaluating 45 discriminatory metabolites for distinguishing patients with AD from nondemented controls, a combination of l-valine and arachidonic acid significantly differentiated these two groups, achieving a 0.88 area under the curve. Taken together, these findings highlight the potential of hair metabolomics in identifying disease-specific metabolic alterations and developing biomarkers for improving disease detection and monitoring.
Collapse
Affiliation(s)
- Chih-Wei Chang
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Yi Hsu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Tai Lo
- Department
of Geriatrics and Gerontology, National Cheng Kung University Hospital,
College of Medicine, National Cheng Kung
University, Tainan 704, Taiwan
- Department
of Public Health, College of Medicine, National
Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Hsuan Liu
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Onanong Mee-inta
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsueh-Te Lee
- Institute
of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Min Kuo
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department
of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pao-Chi Liao
- Department
of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|