1
|
Lee J, Jung H, Jun BM, Yoon Y, Choi JS, Rho H. Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems. CHEMOSPHERE 2025; 370:144034. [PMID: 39733947 DOI: 10.1016/j.chemosphere.2024.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid. NaDCC tablets, originally developed for drinking water disinfection, offer advantages in terms of transport, storage, and safety compared with conventional liquid formulations. A comparative evaluation of cleaning agents was conducted on hollow fiber membranes used in GDM systems, with the concentration and contact times optimized for each chemical. NaOCl demonstrated the highest permeability recovery, reaching 48.29% at 500 mg L-1 after 12 h, followed closely by NaDCC, with a recovery of 46.55% under similar conditions. Conversely, SLS, acetic acid, and citric acid presented significantly lower recovery rates, with maximum flux restorations of 14.57%, 14.90%, and 16.73%, respectively. These results highlight the comparable performance of NaDCC and NaOCl in addressing organic fouling while offering practical advantages such as greater stability and reduced chemical handling risks. This study highlights the efficacy of NaDCC as a viable detergent for GDM systems, and also provides a comprehensive comparative analysis of the water permeability performances of commercial detergents such as NaOCl, which cause various ecotoxicities, and suggests the feasibility of NaDCC as a chemical detergent in practical membrane processes. Our findings contribute to the development of more sustainable and cost-effective membrane-cleaning protocols that enhance long-term operational efficiency and minimize environmental impacts.
Collapse
Affiliation(s)
- Jonghun Lee
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea
| | - Hyejin Jung
- Department of Environmental Engineering, Yonsei University, Yonseidae-gil 1, Wonju, Gangwon, 26493, Republic of Korea
| | - Byung-Moon Jun
- Department of Environmental Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - June-Seok Choi
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Hojung Rho
- Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Song D, Du H, Chen S, Han X, Wang L, Li Y, Liu C, Zhang W, Ma J. A Gravity-Driven Membrane Bioreactor in Treating Real Fruit Juice Wastewater: Response Relationship Between Filtration Behavior and Microbial Community Evolution. MEMBRANES 2024; 14:260. [PMID: 39728710 DOI: 10.3390/membranes14120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The issue of environmental pollution caused by wastewater discharge from fruit juice production has attracted increasing attention. However, the cost-effectiveness of conventional treatment technology remains insufficient. In this study, a gravity-driven membrane bioreactor (GDMBR) was developed to treat real fruit juice wastewater from secondary sedimentation at pressures ranging from 0.01 to 0.04 MPa without requiring backwashing or chemical cleaning, with the aim of investigating flux development and contaminant removal under low-energy conditions. The results demonstrate an initial decrease in flux followed by stabilization during long-term filtration. Moreover, the stabilized flux level achieved with the GDMBR at pressures of 0.01 and 0.02 MPa was observed to surpass that obtained at 0.04 MPa, ranging from 4 to 4.5 L/m-2 h-1. The stability of flux was positively associated with the low membrane fouling resistance observed in the GDMBR system. Additionally, the GDMBR system provided remarkable efficiencies in removing the chemical oxygen demand (COD), biological oxygen demand (BOD), ammonia (NH4+-N), and total nitrogen (TN), with average removal rates of 82%, 80%, 83%, and 79%, respectively. The high biological activity and microbial community diversity within the sludge and biofilm are expected to enhance its biodegradation potential, thereby contributing to the efficient removal of contaminants. Notably, a portion of total phosphorus (TP) can be effectively retained in the reactor, which highlighted the promising application of the GDMBR process for actual fruit juice wastewater based on these findings.
Collapse
Affiliation(s)
- Dan Song
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Haiyao Du
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shichun Chen
- PetroChina Harbin Petrochemical Company, Harbin 150056, China
| | - Xiaodie Han
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Lu Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yonggang Li
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, China
| | - Caihong Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Jun Ma
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
3
|
Gong W, Jiang M, Zhao Y, Wang J, Zhang H, Xie B, Luo J, Tang X, Liang H. Mechanistic insights into different illumination positions control algae production in anaerobic dynamic membrane filtration (AnDM) during decentralized wastewater treatment. BIORESOURCE TECHNOLOGY 2024; 399:130550. [PMID: 38460562 DOI: 10.1016/j.biortech.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Sunlight illumination has the potential to control the stability and sustainability of dynamic membrane (DM) systems. In this study, an up-flow anaerobic sludge blanket (UASB) reactor was combined with DM under different illumination positions (direct, indirect and no illumination) to treat wastewater. Results indicated that the UASB achieved a COD removal up to 87.05 % with an average methane production of 0.28 L/d. Following treatment by the UASB, it was found that under illumination, the removal of organic substances by DM exhibited poor performance due to algal proliferation. However, the DM systems demonstrated efficient removal of ammonia nitrogen, ranging from 96.21 % to 97.67 % after stabilization. Total phosphorus removal was 45.72 %, and membrane flux remained stable when directly illuminated. Conversely, the DM system subjected to indirect illumination showed unstable membrane flux and severe fouling resistance. These findings offer valuable insights into optimizing illumination positions in DM systems under anaerobic conditions.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Jiaoying Luo
- Heilongjiang College of Construction, 999 Xueyuan Road, Hulan District, Harbin 150025, PR China.
| | - Xiaobin Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|