1
|
Ma X, Guo R, Song H, Wang J, Yang Z, Liang G, Peng C. Anaerobic and aerobic sequential process, a promising strategy for breaking the stagnate of biological reductive dechlorination-TCE bioremediation in the field application. CHEMOSPHERE 2025; 372:144106. [PMID: 39800327 DOI: 10.1016/j.chemosphere.2025.144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Trichloroethylene (TCE) is a common chlorinated hydrocarbon contaminant in soil and groundwater, and reductive dechlorination is a biological remediation. However, the TCE reductive dechlorination often stagnates in the stage of cis-1,2-dichloroethylene (cDCE) and chloroethylene (VC). Anaerobic/aerobic sequential degradation provides a new approach for the complete detoxification of TCE, while there has been no systematic summary of bacteria, enzymes, and pathways in the synergistic process. Herein, the objectives of this review are (1) to discuss the reasons why it is difficult to completely reduce dechlorination; (2) to analyze the advantages and pathways of TCE complete detoxification through anaerobic/aerobic sequential degradation process; (3) to summarize the major bacteria and catalytic enzymes of the cDCE and VC oxidation process. This review will highlight the anaerobic/aerobic process in TCE biodegradation and increase understanding of the complete detoxification of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Runnan Guo
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Haokun Song
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jiao Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zixuan Yang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gaolei Liang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
2
|
Petrangeli Papini M, Cerra S, Feriaud D, Pettiti I, Lorini L, Fratoddi I. Biochar/Biopolymer Composites for Potential In Situ Groundwater Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3899. [PMID: 39203078 PMCID: PMC11355651 DOI: 10.3390/ma17163899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via UV-Vis, FTIR, and FESEM-EDS, highlighting the fact that that BCs are essentially graphitic in nature with a sponge-like morphology. The grinding process influences the particle size, reducing the specific surface area by about 30% (evaluated by BET). The adsorption performances of raw BC were validated via an adsorption isotherm using trichloroethylene (TCE) as a model contaminant. A selected BC sample was used to produce hydrophilic, stable polymer composites with chitosan (CS), alginate (ALG), potato starch (PST), and sodium carboxymethylcellulose (CMC) via a simple blending approach. Pilot sedimentation tests over 7 days in water identified BC@PST and BC@CMC as the most stable suspensions due to a combination of both hydrogen bonds and physical entrapment, as studied by FTIR. BC@CMC showed optimal distribution and retention properties without clogging in breakthrough tests. The study concludes that biopolymer-based biochar composites with improved stability in aqueous environments hold significant promise for addressing various groundwater pollution challenges.
Collapse
Affiliation(s)
- Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Damiano Feriaud
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ida Pettiti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
4
|
Viotti P, Marzeddu S, Antonucci A, Décima MA, Lovascio P, Tatti F, Boni MR. Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:809. [PMID: 38399060 PMCID: PMC10890072 DOI: 10.3390/ma17040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
Collapse
Affiliation(s)
- Paolo Viotti
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Simone Marzeddu
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Angela Antonucci
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - María Alejandra Décima
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Pietro Lovascio
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Fabio Tatti
- National Centre of Waste and Circular Economy, Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maria Rosaria Boni
- Department of Civil, Building and Environmental Engineering (DICEA), Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
5
|
Che M, Su H, Zhao X, Fu D, Huang R, Guo X, Su R. Tannic acid promotes the activation of persulfate with Fe(ii) for highly efficient trichloroethylene removal. RSC Adv 2023; 13:34371-34377. [PMID: 38024972 PMCID: PMC10665609 DOI: 10.1039/d3ra06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Trichloroethylene (TCE) is an Environmental Protection Agency (EPA) priority pollutant that is difficult to be removed by some remediation methods. For instance, TCE removal using persulfate (PS) activated by ferrous iron (Fe(ii)) has been tested but is limited by the unstable Fe(ii) concentration and the initial pH of contaminated water samples. Here we reported a new TCE removal system, in which tannic acid (TA) promoted the activation of PS with Fe(ii) (TA-Fe(ii)-PS system). The effect of initial pH, temperature, and concentrations of PS, Fe(ii), TA, inorganic anions and humic acid on TCE removal was investigated. We found that the TA-Fe(ii)-PS system with 80 mg L-1 of TA, 1.5 mM of Fe(ii) and 15 mM of PS yielded about 96.2-99.1% TCE removal in the pH range of 1.5-11.0. Radical quenching experiments were performed to identify active species. Results showed that SO4˙- and ˙OH were primarily responsible for TCE removal in the TA-Fe(ii)-PS system. In the presence of TA, the Fe-TA chelation and the reduction of TA could regulate Fe(ii) concentration and activate persulfate for continuously releasing reactive species under alkaline conditions. Based on the excellent removal performance for TCE, the TA-Fe(ii)-PS system becomes a promising candidate for controlling TCE in groundwater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Daqing Fu
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Xuehui Guo
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|