1
|
Wu G, Wang H, Huang L, Yan J, Chen X, Zhu H, Wu Y, Liu S, Shen X, Liu W, Liu X, Zhang H. Copper hexacyanoferrate/carbon sheet combination with high selectivity and capacity for copper removal by pseudocapacitance. J Colloid Interface Sci 2024; 659:993-1002. [PMID: 38224631 DOI: 10.1016/j.jcis.2024.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Hongyu Wang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanxuan Chen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Huabing Zhu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Yi Wu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Shumei Liu
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Xiaozhen Shen
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China
| | - Weiqi Liu
- International Department, The Affiliated High School of South China Normal University, No.1 Zhongshan Avenue West, Tianhe District, Guangzhou 510630, PR China
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Yoon H, Min T, Kim SH, Lee G, Oh D, Choi DC, Kim S. Effect of activated carbon electrode material characteristics on hardness control performance of membrane capacitive deionization. RSC Adv 2023; 13:31480-31486. [PMID: 37901265 PMCID: PMC10603821 DOI: 10.1039/d3ra05615e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Capacitive deionization (CDI) is an electrochemical-based water treatment technology that has attracted attention as an effective hardness-control process. However, few systematic studies have reported the criteria for the selection of suitable electrode materials for membrane capacitive deionization (MCDI) to control hardness. In this study, the effect of electrode material characteristics on the MCDI performance for hardness control was quantitatively analyzed. The results showed that the deionization capacity and the deionization rate were affected by the specific capacitance and BET-specific surface area of the activated carbon electrode. In addition, the deionization rate also showed significant relationship with the BET specific surface area. Furthermore, it was observed that the deionization capacity and the deionization rate have a highly significant relationship with the BET specific surface area divided by the wettability performance expressed as the minimum wetting rate (MWR). These findings highlighted that the electrode material should have a large surface area and good wettability to increase the deionization capacity and the deionization rate of MCDI for hardness control. The results of this study are expected to provide effective criteria for selecting MCDI electrode materials aiming hardness control.
Collapse
Affiliation(s)
- Hongsik Yoon
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials Daejeon 34103 Republic of Korea
| | - Taijin Min
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials Daejeon 34103 Republic of Korea
| | - Sung-Hwan Kim
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials Daejeon 34103 Republic of Korea
| | - Gunhee Lee
- Department of Sustainable Environment Research, Korea Institute of Machinery & Materials Daejeon 34103 Republic of Korea
| | - Dasom Oh
- EHS Research Center, Samsung Electronics Co., Ltd. Gyeonggi-do 18448 Republic of Korea
| | - Dong-Chan Choi
- EHS Research Center, Samsung Electronics Co., Ltd. Gyeonggi-do 18448 Republic of Korea
| | - Seongsoo Kim
- EHS Research Center, Samsung Electronics Co., Ltd. Gyeonggi-do 18448 Republic of Korea
| |
Collapse
|