1
|
Amirfakhri SJ, Zobel B, Lilla MK, Tomaszewski C, Stellpflug O. Enhanced PFBS adsorption via silver-impregnated activated carbon: Mechanistic insights and Thermodynamic analysis. CHEMOSPHERE 2025; 375:144257. [PMID: 40037022 DOI: 10.1016/j.chemosphere.2025.144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the effect of silver nanoparticle impregnation on the performance of activated carbon (AC) for perfluorobutane sulfonic acid (PFBS) adsorption. Using the deposition-precipitation method, three silver-impregnated activated carbon (SIAC) adsorbents were synthesized with varying silver contents: SIAC0.01 (0.15 wt%), SIAC0.1 (1.7 wt%), and SIAC1 (8.5 wt%). Among these, SIAC0.1 exhibited the highest adsorption capacity at 25 °C and was selected for detailed analysis. The adsorption mechanism of PFBS on SIAC0.1 was examined at 25, 35, and 45 °C, yielding key kinetic parameters, including reaction rate constants and activation energies. Additionally, the thermodynamic properties of the adsorption process, including ΔH≠, ΔS≠, and ΔG≠, were evaluated. The findings reveal that silver nanoparticle impregnation significantly enhances the kinetic and thermodynamic favorability of PFBS adsorption, leading to a substantial increase in adsorption capacity. This work highlights the potential of silver-impregnated activated carbon as an effective adsorbent for PFBS removal.
Collapse
Affiliation(s)
- Seyed Javad Amirfakhri
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Ben Zobel
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Michael Karsten Lilla
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Christopher Tomaszewski
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Olivia Stellpflug
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| |
Collapse
|
2
|
Bérubé R, LeFauve MK, Khalaf A, Aminioroomi D, Kassotis CD. Effects of organic and inorganic contaminants and their mixtures on metabolic health and gene expression in developmentally exposed zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620642. [PMID: 39554096 PMCID: PMC11565930 DOI: 10.1101/2024.10.28.620642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Organic and inorganic chemicals co-occur in household dust, and these chemicals have been determined to have endocrine and metabolic disrupting effects. While there is increasing study of chemical mixtures, the effects of complex mixtures mimicking household dust and other environmental matrices have not been well studied and their potential metabolism disrupting effects are thus poorly understood. Previous research has demonstrated high potency adipogenic effects of residential household dust extracts using in vitro adipogenesis assays. More recent research simplified this to a mixture relevant to household dust and comprised of common co-occurring organic and inorganic contaminants, finding that these complex combinations often exhibited additive or even synergistic effects in cell models. This study aimed to translate our previous in vitro observation to an in vivo model, the developing zebrafish, to evaluate the metabolic effects of early exposure to organic and inorganic chemicals, individually and in mixtures. Zebrafish embryos were exposed from 1 day post fertilization (dpf) to 6 dpf, then metabolic energy expenditure, swimming behavior and gene expression were measured. Globally, we observed that most mixtures did not reflect the effects of individual chemicals; the BFR mixture produced a less potent effect when compared to the individual chemicals, while the PFAS and the inorganic mixtures seemed to have a more potent effect than the individual chemicals. Finally, the environmental mixture, mimicking household dust proportions, was less potent than the inorganic chemical mix alone. Additional work is necessary to better understand the mixture effect of inorganic and organic chemicals combined.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Matthew K. LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Aicha Khalaf
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Darya Aminioroomi
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| |
Collapse
|
3
|
Gu S, Qu F, Qu D, Yan Z, Meng Y, Liang Y, Chang H, Liang H. Improving membrane distillation performance by Fe(II) activated sodium percarbonate oxidation during the treatment of shale gas produced water. WATER RESEARCH 2024; 262:122139. [PMID: 39068730 DOI: 10.1016/j.watres.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.
Collapse
Affiliation(s)
- Suhua Gu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
Song Z, Wang X, Feng W, Armand M, Zhou Z, Zhang H. Designer Anions for Better Rechargeable Lithium Batteries and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310245. [PMID: 38839065 DOI: 10.1002/adma.202310245] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed.
Collapse
Affiliation(s)
- Ziyu Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Xingxing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenfang Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz, 01510, Spain
| | - Zhibin Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Heng Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| |
Collapse
|