1
|
Vilanova A, Dias P, Lopes T, Mendes A. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges. Chem Soc Rev 2024; 53:2388-2434. [PMID: 38288870 DOI: 10.1039/d1cs01069g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Green-hydrogen is considered a "key player" in the energy market for the upcoming decades. Among currently available hydrogen (H2) production processes, photoelectrochemical (PEC) water splitting has one of the lowest environmental impacts. However, it still presents prohibitively high production costs compared to more mature technologies, such as steam methane reforming. Therefore, the competitiveness of PEC water splitting must rely on its environmental and functional advantages, which are strongly linked to the reactor design, to the intrinsic properties of its components, and to their successful upscaling. This review gives special attention to the engineering aspects and categorizes PEC devices into four main types, according to the configuration of electrodes and strategies for gas separation: wired back-to-back, wireless back-to-back, wired side-by-side, and wired separated electrode membrane-free. Independently of the device architecture, the use of concentrated sunlight was found to be mandatory for achieving competitive green-H2 production. Additionally, feasible strategies for upscaling the key components of PEC devices, especially photoelectrodes, are urgently needed. In a pragmatic context, the way to move forward is to accept that PEC devices will operate close to their thermodynamic limits at large-scale, which requires a solid convergence between academics and industry. Research efforts must be redirected to: (i) build and demonstrate modular devices with a low-cost and highly recyclable embodiment; (ii) optimize thermal and power management; (iii) reduce ohmic losses; (iv) enhance the chemical stability towards a thousand hours; (v) couple solar concentrators with PEC devices; (vi) boost PEC-H2 production through the use of organic compounds; and (vii) reach consensual standardized methods for evaluating PEC devices, at both environmental and techno-economic levels. If these targets are not met in the next few years, the feasibility of PEC-H2 production and its acceptance by industry and by the general public will be seriously compromised.
Collapse
Affiliation(s)
- António Vilanova
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal
| | - Paula Dias
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Tânia Lopes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Adélio Mendes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
2
|
Candra O, Ali A, Askar S, S Bhat R, Abdullaev SS, Shahab S, Firas Abdulameer S, Hussien BM, Alsalamy AH, Nomani MZM. Thermal and environmental optimization of an intercooled gas turbine toward a sustainable environment. CHEMOSPHERE 2023; 339:139624. [PMID: 37516320 DOI: 10.1016/j.chemosphere.2023.139624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
In this article, in order to achieve a sustainable environment, the optimization of a GT equipped with intercooling of the compression process is discussed. To limit the exergy destruction in intercooling cooling process and also to reduce the heat dissipation in the environment, an ORC system is applied for heat recovery and more power generation. Decision variables include CPR, first stage CPR, TIT, intercooler effectiveness, HRVG pressure, and superheating degree. During a parametric study, the effect of decision variables on operating factors including exergy efficiency, TCR, and the normalized emission rate of environmental pollutants are investigated. Finally, by performing bi-objective optimization and considering exergy efficiency and TCR as OFs, optimal performance conditions are determined. Finally, it is observed that in optimum conditions, exergy efficiency is 33% and TCR is 0.9 $/s.
Collapse
Affiliation(s)
- Oriza Candra
- Power Engineering Research Group, Padang, Indonesia
| | - Amjad Ali
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahad University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Shavan Askar
- Erbil Polytechnic University, Erbil Technical Engineering College, Erbil, Iraq
| | - Ramesh S Bhat
- Department of Chemistry, NMAM Institute of Technology, NITTE (Deemed to be University), NITTE, 574110, Karnataka, India.
| | - Sherzod Shukhratovich Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Scientific and Innovation Department, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajjad Firas Abdulameer
- Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq; Civil Engineering Department, College of Engineering, University of Kerbala, Karbala, Iraq
| | - Beneen M Hussien
- College of Engineering Technology, The Islamic University, Najaf, Iraq
| | - Ali H Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| | - M Z M Nomani
- Faculty of Law Aligarh Muslim University, Aligarh, 202001, U.P., India
| |
Collapse
|