1
|
Yan S, Yuan Y, Pan F, Mu G, Xu H, Xue X. Distinguishing the botanical origins of rare honey through untargeted metabolomics and machine learning interpreting flavonoid profiles. Food Chem 2025; 470:142752. [PMID: 39793234 DOI: 10.1016/j.foodchem.2025.142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Distinguishing the botanic origins of monofloral honey is the foremost concern in ensuring its authentication. In this work, an innovative, green, and comprehensive approach was developed to distinguish the botanic origins of four types of rare honey, and the strategy involved in the following aspects: Based on theoretical design, suitable natural deep eutectic solvent (NADES) was screened to extract flavonoids from honey samples; after NADES extracts were directly analyzed by high-resolution mass spectrometry, the discrimination models of monofloral honey were established by untargeted metabolomics combined with machine learning. Based on the comparison of various models, the Random Forest algorithm had higher prediction accuracy for four types of monofloral honey, and characteristic compounds for each rare monofloral honey were screened based on SHapley Additive exPlanations values. This work provides a new perspective on the use of AI technology and green chemistry to control the quality of honey.
Collapse
Affiliation(s)
- Sha Yan
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China; Shanxi Center of Technology Innovation for Storage and Processing of Fruit and Vegetable, China
| | - Yuzhe Yuan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Guodong Mu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Haitao Xu
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
2
|
Haydous F, Nehmeh B, Rebehmed J, Al-Alam J, Saab C, Sabbagh S, Hamieh A, Yassin A, Wazne M, Akoury E. Unraveling the levels of emerging contaminants along the eastern Mediterranean Sea. Sci Rep 2025; 15:4401. [PMID: 39910231 PMCID: PMC11799151 DOI: 10.1038/s41598-025-89027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/03/2025] [Indexed: 02/07/2025] Open
Abstract
The Eastern Mediterranean Sea, rich in environmental and cultural heritage, faces increasing threats from emerging contaminants like toxic metals and phthalates. This study evaluates their occurrence across 40 Lebanese Mediterranean coastal hotspots using advanced techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS), X-ray Fluorescence Spectroscopy (XRF) and Gas Chromatography-Mass Spectrometry (GC-MS). Widespread contamination was detected in both water and sediments near landfills, sewage discharges, and industrial areas. Metal concentrations varied, with chromium (Cr) reaching 20.3 µg/L, arsenic (As) 12.1 µg/L, and lead (Pb) 30.6 µg/L, indicating pollution from urban and industrial activities. Manganese (Mn) and zinc (Zn) were within safe limits, while selenium (Se) and arsenic posed ecological risks. Among 13 phthalates, diethylhexyl phthalate (DEHP) was the most prevalent, ranging from 15.57 to 72.88 µg/L. Sediments showed elevated calcium, strontium, and barium levels, exceeding safety thresholds. Statistical analysis revealed correlations between contaminants and spatial variability driven by industrial, agricultural, and urban activities. These findings highlight the need for proper regulations and routine monitoring to protect marine ecosystems and public health.
Collapse
Affiliation(s)
- Fatima Haydous
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Bilal Nehmeh
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Joseph Rebehmed
- Department of Computer Science, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Josephine Al-Alam
- Civil Engineering Department, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Christopher Saab
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3AOB8, Canada
| | - Sara Sabbagh
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Ali Hamieh
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Ali Yassin
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon
| | - Mahmoud Wazne
- Civil Engineering Department, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Elias Akoury
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University, Beirut, 1102-2801, Lebanon.
| |
Collapse
|
3
|
Mukhametova LI, Karimova MR, Zharikova OG, Pirogov AV, Levkina VV, Chichkanova ES, Liu L, Xu C, Eremin SA. Detection of Dibutyl Phthalate in Surface Water by Fluorescence Polarization Immunoassay. BIOSENSORS 2023; 13:1005. [PMID: 38131765 PMCID: PMC10741632 DOI: 10.3390/bios13121005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/19/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
Dibutyl phthalate (DBP) is widely used as a plasticizer in the production of polymeric materials to give them flexibility, strength and extensibility. However, due to its negative impact on human health, in particular reproductive functions and fetal development, the content of DBP must be controlled in food and the environment. The present study aims to develop a sensitive, fast and simple fluorescence polarization immunoassay (FPIA) using monoclonal antibodies derived against DBP (MAb-DBP) for its detection in open waters. New conjugates of DBP with various fluorescein derivatives were obtained and characterized: 5-aminomethylfluorescein (AMF) and dichlorotriazinylaminofluorescein (DTAF). The advantages of using the DBP-AMF conjugate in the FPIA method are shown, the kinetics of binding of this chemical with antibodies are studied, the analysis is optimized, and the concentration of monoclonal antibodies is selected for sensitivity analysis-16 nM. The calibration dependence of the fluorescence polarization signal for the detection of DBP was obtained. The observed IC50 (DBP concentration at which a 50% decrease in the fluorescence polarization signal occurs, 40 ng/mL) and the limit of detection (LOD, 7.5 ng/mL) values were improved by a factor of 45 over the previously described FPIA using polyclonal antibodies. This technique was tested by the recovery method, and the high percentage of DBP discovery in water ranged from 85 to 110%. Using the developed method, real water samples from Lake Onega were tested, and a good correlation was shown between the results of the determination of DBP by the FPIA method and GC-MS. Thus, the FPIA method developed in this work can be used to determine DBP in open-water reservoirs.
Collapse
Affiliation(s)
- Liliya I. Mukhametova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninskie Prospect 33, 119071 Moscow, Russia
| | - Madina R. Karimova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
| | - Olga G. Zharikova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
| | - Andrey V. Pirogov
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
| | - Valentina V. Levkina
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
| | - Ekaterina S. Chichkanova
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
| | - Liqiang Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China (C.X.)
| | - Chuanlai Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China (C.X.)
| | - Sergei A. Eremin
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (L.I.M.); (O.G.Z.); (A.V.P.); (V.V.L.); (E.S.C.)
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninskie Prospect 33, 119071 Moscow, Russia
| |
Collapse
|