1
|
Hu S, Lv Y, Hou X, Li J, Hou Y, Fu X, Xu T. BDD electrode pulsed alternating electrochemical oxidation of sulfamethazine in antibiotic wastewater: Process optimization and degradation mechanism. ENVIRONMENTAL RESEARCH 2025; 275:121375. [PMID: 40081652 DOI: 10.1016/j.envres.2025.121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
To address the issues of electrode passivation and high electric energy consumption (EEC) associated with the removal of antibiotic wastewater using traditional direct current electrocatalytic oxidation (DCEO) with Boron-Doped Diamond (BDD) electrodes, this study aims to develop an efficient, low-cost, and self-cleaning BDD electrode pulsed alternating electrocatalytic oxidation (BDD-PAEO) technology. The experimental findings demonstrated that, under optimal conditions, the BDD-PAEO mode achieved a 99.9% removal efficiency for sulfamethazine (SMZ). Furthermore, the removal efficiency of COD in the BDD-PAEO mode consistently remained above 93% in 10 experimental cycles. Compared with the BDD-DCEO mode, the EEC of the BDD-PAEO mode is reduced by 17.39%, and the current efficiency (CE) is increased by 47.15%. The ·OH was confirmed to be the main active oxidant species for degradation of SMZ by free radical quenching experiments, electron paramagnetic resonance (EPR) and three-dimensional excitation-emission matrix (3D-EEM) spectroscopy. The degradation pathway of SMZ was revealed by density functional theory (DFT) calculation and gas chromatography-mass spectrometry (GC-MS) analysis. Toxicity estimation illustrated that BDD-PAEO technology can effectively reduce the toxicity of wastewater after SMZ degradation. This study shows BDD-PAEO technology's high potential for efficient SMZ degradation and toxicity reduction in antibiotic wastewater, offering a novel treatment solution.
Collapse
Affiliation(s)
- Simeng Hu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yongshang Lv
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xifei Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jiahao Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaxuan Hou
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaohua Fu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tao Xu
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Bayode AA, Osti A, Glisenti A. Sonophotocatalytic degradation of sulfamethoxazole using lanthanum ferrite perovskite oxide anchored on an ultrasonically exfoliated porous graphitic carbon nitride nanosheet. RSC Adv 2024; 14:22063-22075. [PMID: 39005251 PMCID: PMC11240137 DOI: 10.1039/d4ra03096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The lanthanum ferrite perovskite (La0.8FO) was synthesized using a citric combustion route and then modified with a porous graphitic nitride nanosheet via the wet impregnation-assisted ultrasonic method to produce La0.8FO@PgNS. Various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet diffuse reflectance spectroscopy (UV-DRS), and Tauc plot analysis were employed to confirm the functional moieties, crystallinity, phase change, morphology, composition, and bandgap of La.0.8FO and La0.8FO@PgNS. La0.8FO and La0.8FO@PgNS were used for the sonophotocatalytic oxidative degradation of sulfamethoxazole (SMX) under low energy and ultrasound wave frequency in the presence of visible light. La0.8FO and La0.8FO@PgNS exhibited a sonophotocatalytic degradation capacity of 52.06 and 99.60%, respectively. Furthermore, the rate constant at the optimum condition of pH 7 and 5 mg L-1 concentration was 0.01343 and 0.01494 min-1 for La0.8FO and La0.8FO@PgNS, respectively. The integration of sonolysis and photocatalysis in the remediation process of SMX resulted in a synergy of 2.5-fold. Ultrasonic waves and hydroxyl and superoxide radicals are the main species governing the degradation process while La0.8FO@PgNS was stable over 8 cycles, proving to be a sustainable material for environmental remediation.
Collapse
Affiliation(s)
- Ajibola A Bayode
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University P.M.B. 230 Ede 232101 Nigeria
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| | - Andrea Osti
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| | - Antonella Glisenti
- Department of Chemical Sciences, University of Padova Via F. Marzolo, 1 35131 Padua Italy
| |
Collapse
|
3
|
Zheng W, Liu Z, Wang B, Tao M, Ji H, Xiang X, Fu Z, Liao L, Liao P, Chen R. Effective degradation of polystyrene microplastics by Ti/La/Co-Sb-SnO 2 anodes: Enhanced electrocatalytic stability and electrode lifespan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171002. [PMID: 38369141 DOI: 10.1016/j.scitotenv.2024.171002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Microplastics have been identified as an emerging pollutant that poses a risk to the aquatic environment, and it is a challenge to find a suitable removal process. Electrocatalytic oxidation (ECO) technology has shown promising performance in removing various persistent organic pollutants. In this study, we prepared a new anode for removing polystyrene microplastics (PS MPs) by ECO. Ti/La-Sb-SnO2 electrodes doped with the rare earth element La as the active layer were synthesized to enhance the electrocatalytic activity. The lifespan of the electrode was improved by doping Mn, Co, or Ru as an intermediate layer modification between the titanium (Ti) substrate and the La-Sb-SnO2 active layer, respectively. The experimental results indicated that the addition of three types of intermediate layers led to different degrees of decrease in the catalytic activity of the electrode and the degradation performance of PS MPs. The addition of the Co intermediate layer had a negligible effect on the catalytic activity and performance of the Ti/La-Sb-SnO2 anode for PS degradation. In addition, the electrode lifespan with Co intermediate layer was significantly prolonged, which was 4.54, 2.38, and 1.19 times higher than the electrode without intermediate layer and the electrode with Ru and Mn intermediate layer, respectively. Therefore, Co was determined to be the optimal choice as the intermediate layer, and the production technique for the Ti/La/Co-Sb-SnO2 anodes was carefully adjusted. The degradation efficiency of PS MPs was optimized at a heat treatment temperature of 400 °C and a Sn: Co material ratio of 5:1, with a removal rate of 28.0 %. The ECO treatment also resulted in more pronounced changes in the structure and functional groups of the MPs. Various alkyl cleavage and oxidation products were detected after the treatment, suggesting that the oxidant (hydroxyl radicals) strongly interacted with the MPs, leading to their degradation. Overall, this work provided a new insight into removing MPs in water through the use of modified electrodes.
Collapse
Affiliation(s)
- Weikang Zheng
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zhenzhong Liu
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Boyan Wang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Meijun Tao
- Engineering Fire Technology Research Center of JiangXi Province, Nanchang 330046, China
| | - Hongliang Ji
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Xiaofang Xiang
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zhengguo Fu
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Lili Liao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Peng Liao
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Ronglong Chen
- School of Resources and Environment, Nanchang University, Nanchang 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| |
Collapse
|
4
|
Rai D, Sinha S. Characterization and electrochemical properties of TiO 2-rNTs/SnO 2-Sb/PbO 2 electrodes for the mineralization of persistent organic pollutants using anodic oxidation coupled Electro-Fenton treatment: Effect of precursor selection. CHEMOSPHERE 2024; 352:141307. [PMID: 38307338 DOI: 10.1016/j.chemosphere.2024.141307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
The present study compares the effect of using different solvents on the electrochemical properties of the reduced TiO2 nanotubes (TiO2-rNTs) layered Ti/TiO2-rNTs/SnO2-Sb/PbO2 anodes. The electrodes are prepared using three different solvent-based precursors: (i) isopropanol, (ii) ethylene glycol and citric acid (Pechini method), and (iii) 2-hydroxyethylammonium acetate (2HEAA) ionic liquid (IL) via the thermal decomposition route. The decomposition mechanism of precursor solutions was explored using the thermogravimetric (TGA) analysis. Further, the physicochemical properties of the electrodes are examined using Field emission Scanning Electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and X-ray photoelectron emission spectroscopy (XPS). The results revealed that solvents with higher viscosity and slower decomposition rates support better film uniformity and higher stability of the electrode. The TiO2 -rNTs bottom layer and PbO2 top layer helped obtain higher film stability, increased working potential window (2.2 V vs. SHE) of the electrode, and the repeatability of the results. The performance of different electrodes based on the precursor solution is found as IL ≫ Pechini > Isopropanol. 4-chlorophenol (4-CP) is used as a model pollutant to test the performance of IL-Ti/TiO2-rNTs/SnO2-Sb/PbO2 anode in an anodic oxidation (AO) coupled electro-Fenton (EF) treatment. Further, the reliability of the electrode is evaluated by mineralizing other persistent organic pollutants (POPs) like tetracyclin, phenol, 2-chlorophenol (2-CP), and 2,4-dichlorophenol (2,4-DCP). Under the optimized conditions, the proposed system was able to mineralize the tetracyclin, phenol, 2-CP, 2,4-DCP, and 4-CP up to 78.91, 82.07, 74.96, 78.78, and 69.3 %, respectively. Moreover, the degradation mechanism of chlorophenols is proposed.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| | - Shishir Sinha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Wang K, Yu X, Liu Z, Zhang T, Ma Y, Niu J, Yao B. Interface engineering of 0D/2D Cu 2O/BiOBr Z-scheme heterojunction for efficient degradation of sulfamethoxazole: Mechanism, degradation pathway, and DFT calculation. CHEMOSPHERE 2024; 346:140596. [PMID: 37918537 DOI: 10.1016/j.chemosphere.2023.140596] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Constructed heterojunction has been considered an efficient strategy to enhance the migration and transfer of photoinduced charge carriers. Herein, a Z-scheme Cu2O/BiOBr heterojunction with 0D/2D structure was fabricated by microwave hydrothermal method. It was found that the optimal composites photocatalyst showed excellent activity for sulfamethoxazole (SMZ) illumination, and the removal rate reached 90.7%, which was higher than pristine Cu2O (53.0%) and BiOBr (60.0%). Subsequently, the operational parameters such as catalyst dosage, concentrations of pollutants, and pH of solution were investigated. According to the ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRs), Mott-Schottky curve, and density functional theory (DFT) analysis, the Z-scheme degradation mechanism of Cu2O/BiOBr heterostructure was proposed. Among them, the interface structure of 0-dimensions/2-dimensions (0D/2D) can significantly increase the number of heterojunctions in the composite catalyst, and Z-scheme heterostructures can accelerate the generation and migration of photoinduced charge carriers, which has a facilitation effect on improving the decomposition activity of the photocatalyst. Moreover, three possible pathways for SMZ degradation were inferred. This study provides a promising strategy for constructing novel heterojunctions with high photocatalytic performance.
Collapse
Affiliation(s)
- Kai Wang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China; Material Corrosion and Protection Key Laboratory of Shaanxi Province, Xi'an, 710048, China
| | - Xiaojiao Yu
- School of Science, Xi'an University of Technology, Xi'an, 710048, China; Material Corrosion and Protection Key Laboratory of Shaanxi Province, Xi'an, 710048, China.
| | - Zongbin Liu
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Ting Zhang
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Yao Ma
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Jinfen Niu
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| | - Binhua Yao
- School of Science, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|