1
|
Aydin DC, Aldas-Vargas A, Grotenhuis T, Rijnaarts H. Microaerobic biodegradation of aromatic hydrocarbon mixtures: strategies for efficient nitrate and oxygen dosage. Appl Microbiol Biotechnol 2025; 109:9. [PMID: 39821078 PMCID: PMC11739264 DOI: 10.1007/s00253-024-13388-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present. An innovative strategy of alternating nitrate-reducing and microaerobic conditions to stimulate biodegradation is proposed, utilizing nitrate initially to degrade easily-degradable compounds, and potentially reducing the need for additional oxygen. Batch experiments were conducted to assess the biodegradation of a BTEX, indene, indane, and naphthalene mixture using groundwater and sediments from an anaerobic contaminated aquifer. Two set-ups were incubated for 98 days to assess the redox transitions between microaerobic (oxygen concentrations < 0.5 mg O2 L-1) and nitrate-reducing conditions, aiming to minimize external electron acceptor usage while maximizing degradation. Comparative experiments under fully aerobic and fully anaerobic (nitrate-reducing) conditions were conducted, revealing that under microaerobic conditions, all compounds were completely degraded, achieving removal efficiencies comparable to fully aerobic conditions. A pre-treatment phase involving nitrate-reducing conditions followed by microaerobic conditions showed more effective utilization of oxygen specifically for contaminant degradation compared to fully aerobic conditions. Contrarily, under fully anaerobic conditions, without oxygen addition, partial degradation of ethylbenzene was observed after 400 days, while other compounds remained. The outcomes of this study can provide valuable insights for refining strategies involving oxygen and nitrate dosages, thereby enhancing the efficacy of in situ bioremediation approaches targeting complex hydrocarbon mixtures within anaerobic subsurface environments. KEY POINTS: • BTEX, indene, indane, and naphthalene mix biodegraded under microaerobic conditions • Subsurface microorganisms swiftly adapt from nitrate to microaerobic conditions • More oxygen directed to hydrocarbon biodegradation via a pre-anaerobic treatment.
Collapse
Affiliation(s)
- Dilan Camille Aydin
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Andrea Aldas-Vargas
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Tim Grotenhuis
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Huub Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
2
|
Li R, Wei C, Tang Z, Ali M, Ma Z, Li B, Gu A, Song X. An in situ reactive zone approach using calcium peroxide for the remediation of benzene and chlorobenzene in groundwater: A field study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123899. [PMID: 39740443 DOI: 10.1016/j.jenvman.2024.123899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO2) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO2 were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.75 m in the reactive zones created by CaO2 supplemented with a buffer solution (Area A) and CaO2 only (Area B). Both benzene and chlorobenzene were remediated to meet the cleanup goals within 5 months. The benzene and chlorobenzene concentration rebounds observed in monitoring wells were treated effectively with sustained effect of reagents. The laboratory validation experiments verified CaO2 with a buffer solution could maintain the pH values within the range of 6.05-7.69, and higher DO concentrations for prolonged period. The contributions of biodegradation for benzene were 43.47% and 42.02% in CaO2 group and CaO2 adjusted with buffer solutions group, respectively, while those for chlorobenzene were 16.87% and 19.61%. In addition, it was demonstrated in the laboratory that the application of CaO2 supplemented with a buffer solution had the best remediation efficiency for benzene and chlorobenzene, due to the contributions from both the free radicals HO• and the biodegradation of co-contaminants by the native microbial consortium. Furthermore, the intermediate byproducts, including phenol, 2-chlorophenol and pyruvate, were detected in groundwater collected in the field, and the biodegradation and oxidative degradation pathways of benzene and chlorobenzene with the application of CaO2 were proposed. The microbial composition analyses for groundwater samples revealed that multiple functional bacteria, which are capable of degrading benzene and chlorobenzene, were enriched. The findings of the current study take one step further for the understanding of the fundamentals of CaO2 as a slow oxygen releasing reagent, as well as its engineering applications for the remediation of organic contaminants in soil and groundwater.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changlong Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Zhiwen Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mukhtiar Ali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipan Ma
- Jiangsu Academy of Environmental Industry and Technology Corp, Nanjing, 210019, China
| | - Bing Li
- Jiangsu Academy of Environmental Industry and Technology Corp, Nanjing, 210019, China
| | - Ailiang Gu
- Jiangsu DDBS Environmental Remediation Co., Ltd, Nanjing, 210012, China
| | - Xin Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Yang L, Liu Y, Li C, Li P, Zhang A, Liu Z, Wang Z, Wei C, Yang Z, Li Z. Optimizing carbon sources regulation in the biochemical treatment systems for coal chemical wastewater: Aromatic compounds biodegradation and microbial response strategies. WATER RESEARCH 2024; 256:121627. [PMID: 38642539 DOI: 10.1016/j.watres.2024.121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
The complex composition of coal chemical wastewater (CCW), marked by numerous highly toxic aromatic compounds, induces the destabilization of the biochemical treatment system, leading to suboptimal treatment efficacy. In this study, a biochemical treatment system was established to efficiently degrade aromatic compounds by quantitatively regulating the dosage of co-metabolized substrates (specifically, the chemical oxygen demand (COD) Glucose: COD Sodium acetate = 3:1, 1:3, and 1:1). The findings demonstrated that the system achieved optimal performance under the condition that the ratio of COD Glucose to COD Sodium acetate was 3:1. When the co-metabolized substrate was added to the system at an optimal ratio, examination of pollutant removal and cumulative effects revealed that the removal efficiencies for COD and total organic carbon (TOC) reached 94.61 % and 86.40 %, respectively. The removal rates of benzene series, nitrogen heterocyclic compounds, polycyclic aromatic hydrocarbons, and phenols were 100 %, 100 %, 63.58 %, and 94.12 %, respectively. Research on the physiological response of microbial cells showed that, under optimal ratio regulation, co-metabolic substrates led to a substantial rise in microbial extracellular polymeric substances (EPS) secretion, particularly extracellular proteins. When the system reached the end of its operation, the contents of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) for proteins in the optimal group were 7.12 mg/g-SS and 152.28 mg/g-SS, respectively. Meanwhile, the ratio of α-Helix / (β-Sheet + Random coil) and the proportion of intermolecular interaction forces were also increased in the optimal group. At system completion, the ratio of α-Helix / (β-Sheet + Random coil) reached 0.717 (LB-EPS) and 0.618 (TB-EPS), respectively. Additionally, the proportion of intermolecular interaction forces reached 74.83 % (LB-EPS) and 55.03 % (TB-EPS). An in-depth analysis of the metabolic regulation of microorganisms indicated that the introduction of optimal ratios of co-metabolic substrates contributed to a noteworthy upregulation in the expression of Catechol 2,3-dioxygenase (C23O) and Dehydrogenase (DHA). The expression levels of C23O and DHA were measured at 0.029 U/mg Pro·g MLSS and 75.25 mg TF·(g MLSS·h)-1 (peak value), respectively. Correspondingly, enrichment of aromatic compound-degrading bacteria, including Thauera, Saccharimonadales, and Candidatus_Competibacter, occurred, along with the upregulation of associated functional genes such as Catechol 1,2-dioxygenase, Catechol 2,3-dioxygenase, Protocatechuate 3,4-dioxygenase, and Protocatechuate 4,5-dioxygenase. Considering the intricate system of multiple coexisting aromatic compounds in real CCW, this study not only obtained an optimal ratio for carbon source addition but also enhanced the efficient utilization of carbon sources and improved the capability of the system to effectively degrade aromatic compounds. Additionally, this paper established a theoretical foundation for metabolic regulation and harmless treatment within the biochemical treatment of intricate systems, exemplified by real CCW.
Collapse
Affiliation(s)
- Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chen Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Pengfei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Aining Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Chunxiao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Gao M, Li X, Zhang Q, Li S, Wu S, Wang Y, Sun H. Spatial distribution of volatile organic compounds in contaminated soil and distinct microbial effect driven by aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172256. [PMID: 38583613 DOI: 10.1016/j.scitotenv.2024.172256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The vertical distribution of 35 volatile organic compounds (VOCs) was investigated in soil columns from two obsolete industrial sites in Eastern China. The total concentrations of ΣVOCs in surface soils (0-20 cm) were 134-1664 ng g-1. Contamination of VOCs in surface soil exhibited remarkable variability, closely related to previous production activities at the sampling sites. Additionally, the concentrations of ΣVOCs varied with increasing soil depth from 0 to 10 m. Soils at depth of 2 m showed ΣVOCs concentrations of 127-47,389 ng g-1. Among the studied VOCs, xylene was the predominant contaminant in subsoils (2 m), with concentrations ranging from n.d. to 45,400 ng g-1. Chlorinated alkanes and olefins demonstrated a greater downward migration ability compared to monoaromatic hydrocarbons, likely due to their lower hydrophobicity. As a result, this vertical distribution of VOCs led to a high ecological risk in both the surface and deep soil. Notably, the risk quotient (RQ) of xylene in subsoil (2 m, RQ up to 319) was much higher than that in surface soil. Furthermore, distinct effects of VOCs on soil microbes were observed under aerobic and anaerobic conditions. Specifically, after the 30-d incubation of xylene-contaminated soil, Ilumatobacter was enriched under aerobic condition, whereas Anaerolineaceae was enriched under anaerobic condition. Moreover, xylene contamination significantly affected methylotrophy and methanol oxidation functions for aerobic soil (t-test, p < 0.05). However, aromatic compound degradation and ammonification were significantly enhanced by xylene in anaerobic soil (t-test, p < 0.05). These findings suggest that specific VOC compound has distinct microbial ecological effects under different oxygen content conditions in soil. Therefore, when conducting soil risk assessments of VOCs, it is crucial to consider their ecological effects at different soil depths.
Collapse
Affiliation(s)
- Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuelin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Siyuan Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shanxing Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|