1
|
Jang SE, Kim YH. Optimizing solvent extraction methods for activated carbon-based passive samplers in atmospheric volatile organic compound analysis: minimizing analytical interferences from pretreatment solvents and ensuring quantitative reliability. Anal Bioanal Chem 2025; 417:2267-2279. [PMID: 40072545 DOI: 10.1007/s00216-025-05814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
A passive sampler was used to effectively monitor trace volatile organic compound (VOC) concentrations in the atmosphere. VOCs are typically extracted from passive samplers using CS2, which is a volatile and hazardous chemical that can leave residues and damage the mass spectrometry (MS) system during gas chromatography (GC)-MS. This study aims to develop and validate alternative solvent extraction methods using acetone, ethanol, n-hexane, and a solution of 99% acetone and 1% CS2 (ATCS) for VOCs from passive samplers using a standard GC-MS system. ATCS had the highest VOC extraction efficiency with the average value of 42.4 ± 21.4%, followed by acetone at 29.9 ± 17.6%. Ethanol and n-hexane exhibited extraction efficiencies of less than 9%. Despite the ATCS extraction efficiency of less than 50%, it demonstrated excellent analytical reproducibility (relative standard deviation of 1.62 ± 0.64%) and detection limit of 20.5 ± 12.9 ppt, which was significantly lower than 1 ppb. When used to extract and analyze VOCs from ambient air samples, ATCS yielded VOC concentrations of 0.57 ± 0.33 ppb, consistent with urban air levels. The variance in the outdoor VOC concentrations was less than 0.1 ppb, confirming its high reproducibility. Thus, the ATCS solvent extraction method developed in this study enables the accurate quantification of trace VOCs below 1 ppb, reduces MS damage, and mitigates health risks to analysts using GC-MS.
Collapse
Affiliation(s)
- Se-Eun Jang
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeonbuk State, 54896, Republic of Korea
| | - Yong-Hyun Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeonbuk State, 54896, Republic of Korea.
- Department of Environmental Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeonbuk State, 54896, Republic of Korea.
- Soil Environment Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeonbuk State, 54896, Republic of Korea.
| |
Collapse
|
2
|
Fuentes-Ferragud E, Miralles P, López A, Ibáñez M, Piera JM, Lopez-Labrador FX, Camaró M, López-Ocaña L, Coscollà C. Comprehensive air quality assessment including non-targeted approaches in primary schools from Spain. CHEMOSPHERE 2025; 372:144022. [PMID: 39722401 DOI: 10.1016/j.chemosphere.2024.144022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
This work aims to establish a strategy to comprehensively assess the indoor air quality in schools including the analysis of chemical pollutants, bio-aerosols like fungi, bacteria and respiratory viruses and the identification of volatile and semi-volatile organic compounds applying non-targeted approaches. For this, a pilot study was performed in four primary schools from Spain, located in different urban and rural areas during different seasons. Common indoor pollutants, like CO2, NO2, O3, CO, particulate matter (PM10, PM2.5), ultrafine particles (UFP), total volatile organic compounds (TVOCs), and formaldehyde (HCHO), were assessed in terms of maximum recommended levels, daily variations, seasonality, and school location. Additionally, fungi and bacteria were studied indoors and they were always found at adequate levels. The most prevalent fungal genera were Aspergillus, Penicillium, and Cladosporium. Seventeen respiratory viruses were measured in the air of the assessed classrooms and none were detected. Volatile and semivolatile organic compounds were identified indoors and outdoors using non-targeted approaches based on GC-HRMS and UHPLC-HRMS. High-confidence identified compounds were classified according to their chemical and toxicological characteristics, revealing that 44% and 26% of them presented a high toxicological risk in outdoor and indoor environments, respectively. This study provides a new strategy to assess comprehensively the IAQ in schools, and expands the knowledge about contaminants present in these environments, giving rise to future research.
Collapse
Affiliation(s)
- Esther Fuentes-Ferragud
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, S/N, Av. Sos Baynat, 12071, Castelló de la Plana, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain.
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, S/N, Av. Sos Baynat, 12071, Castelló de la Plana, Spain
| | - Juan Miguel Piera
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain
| | - Francisco Xavier Lopez-Labrador
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain; Microbiology Department, University of Valencia Medical School, 13, Av. Blasco Ibáñez, 46010, Valencia, Spain; CIBERESP, Instituto de Salud Carlos III (Institute of Health Carlos III), Madrid, Spain
| | - Marisa Camaró
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020, Valencia, Spain
| | - Laura López-Ocaña
- Colección Española de Cultivos Tipo, Universitat de València, Calle Agustín Escardino 9, 46980, Paterna, Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, 21, Av. Catalunya, 46020, Valencia, Spain
| |
Collapse
|
3
|
Talavera Andújar B, Pereira SL, Busi SB, Usnich T, Borsche M, Ertan S, Bauer P, Rolfs A, Hezzaz S, Ghelfi J, Brüggemann N, Antony P, Wilmes P, Klein C, Grünewald A, Schymanski EL. Exploring environmental modifiers of LRRK2-associated Parkinson's disease penetrance: An exposomics and metagenomics pilot study on household dust. ENVIRONMENT INTERNATIONAL 2024; 194:109151. [PMID: 39571299 DOI: 10.1016/j.envint.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are a primary monogenic cause of Parkinson's disease (PD). However, the likelihood of developing PD with inherited LRRK2 pathogenic variants differs (a phenomenon known as "reduced penetrance"), with factors including age and geographic region, highlighting a potential role for lifestyle and environmental factors in disease onset. To investigate this, household dust samples from four different groups of individuals were analyzed using metabolomics/exposomics and metagenomics approaches: PD+/LRRK2+ (PD patients with pathogenic LRRK2 variants; n = 11), PD-/LRRK2+ (individuals with pathogenic LRRK2 variants but without PD diagnosis; n = 8), iPD (PD of unknown cause; n = 11), and a matched, healthy control group (n = 11). The dust was complemented with metabolomics and lipidomics of matched serum samples, where available. A total of 1,003 chemicals and 163 metagenomic operational taxonomic units (mOTUs) were identified in the dust samples, of which ninety chemicals and ten mOTUs were statistically significant (ANOVA p-value < 0.05). Reduced levels of 2-benzothiazolesulfonic acid (BThSO3) were found in the PD-/LRRK2+ group compared to the PD+/LRRK2+ . Among the significant chemicals tentatively identified in dust, two are hazardous chemical replacements: Bisphenol S (BPS), and perfluorobutane sulfonic acid (PFBuS). Furthermore, various lipids were found altered in serum including different lysophosphatidylethanolamines (LPEs), and lysophosphatidylcholines (LPCs), some with higher levels in the PD+/LRRK2+ group compared to the control group. A cellular study on isogenic neurons generated from a PD+/LRRK2+ patient demonstrated that BPS negatively impacts mitochondrial function, which is implicated in PD pathogenesis. This pilot study demonstrates how non-target metabolomics/exposomics analysis of indoor dust samples complemented with metagenomics can prioritize relevant chemicals that may be potential modifiers of LRRK2 penetrance.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Susheel Bhanu Busi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, United Kingdom
| | - Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sibel Ertan
- School of Medicine, Department of Neurology, Koc University, Istanbul, Turkey
| | | | | | - Soraya Hezzaz
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Paul Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg; Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
4
|
Wang T, Huang RJ, Jing M, Che J, Xing J, Yang L, Yuan W, Wang Y, Guo J, Zhong H, Huang DD, Huang C, Xu W. Overlooked Trace Molecules in Organic Aerosol Revealed by Gas Chromatography-Orbitrap Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18264-18272. [PMID: 39221859 DOI: 10.1021/acs.est.4c03171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Molecular characterization of organic aerosol (OA) is crucial for understanding its sources and atmospheric processes. However, the chemical components of OA remain not well constrained. This study used gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap MS) and GC-Quadrupole MS (GC-qMS) to investigate the organic composition in PM2.5 from Xi'an, Northwest China. GC-Orbitrap MS identified 335 organic tracers, including overlooked isomers and low-concentration molecules, approximately 1.6 times more than GC-qMS. The "molecular corridor" assessment shows the superior capability of GC-Orbitrap MS in identifying an expansive range of compounds with higher volatility and oxidation states, such as furanoses/pyranoses, di/hydroxy/ketonic acids, di/poly alcohols, aldehydes/ketones, and amines/amides. Seasonal variations in OA composition reflect diverse sources: increased di/poly alcohols in winter are derived from indoor emissions, furanoses/pyranoses and heterocyclics in spring and summer might be from biogenic emissions and secondary formation, and amides in autumn are probably from biomass burning. Integrating partial least squares discriminant analysis (PLS-DA) and potential source contribution function (PSCF) models, the source similarities and differences are further elucidated, highlighting the role of local emissions and transport from southern cities. This study offers new insights into the OA composition aided by the high mass resolution and sensitivity of GC-Orbitrap MS.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Jing
- Thermo Fisher Scientific, Shanghai 200136, China
| | - Jinshui Che
- Thermo Fisher Scientific, Shanghai 200136, China
| | | | - Lu Yang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ying Wang
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Jie Guo
- State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haobin Zhong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China
| |
Collapse
|
5
|
López A, Fuentes-Ferragud E, Mora MJ, Blasco-Ferre J, Barber G, Lopez-Labrador FX, Camaró M, Coscollà C. Air quality of health facilities in Spain. CHEMOSPHERE 2024; 362:142615. [PMID: 38880262 DOI: 10.1016/j.chemosphere.2024.142615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The present study examines indoor air pollution in health facilities, focusing on compounds from various sources, such as industrial products, healthcare activities and building materials. It assesses chemical and microbiological concentrations in two public hospitals, two public healthcare centres, and one public health laboratory in Spain. Measurements included indoor air quality, microbiological contaminants, ambient parameters and non-target analysis across ten different locations. Outdoor air quality was also assessed in the surroundings of the hospitals. The results showed that around 350 substances were tentatively identified at a high confidence level, with over 50 % of compounds classified as of high toxicological risk. Three indoor and 26 outdoor compounds were fully confirmed with standards. These confirmed substances were linked to medical, industrial and agricultural activities. Indoor Air Quality (IAQ) results revealed that CO, CO2, formaldehyde (HCHO), O3 and total volatile organic compounds (TVOCs) showed average values above the recommended guideline levels in at least one of the evaluated locations. Moreover, maximum concentrations detected for CO, HCHO, O3 and TVOCs in hospitals surpassed those previously reported in the literature. SARS-CoV-2 was detected in three air environments, corresponding to COVID-19 patient areas. Fungi and bacteria concentrations were acceptable in all assessed locations, identifying different fungi genera, such as Penicillium, Cladosporium, Aspergillus, Alternaria and Botrytis.
Collapse
Affiliation(s)
- Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain.
| | - Esther Fuentes-Ferragud
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, S/N, Avenida Sos Baynat, 12071 Castelló de la Plana, Spain
| | - María José Mora
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain; Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Alcoy Departament, Polígono Caramanxell, s/n. 03804 Alcoy, Alicante, Spain
| | - Jordi Blasco-Ferre
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain
| | - Gema Barber
- Foundation for the Promotion of the Health and Biomedical Research in the Valencian Region, FISABIO-Xativa/Ontinyent Department, 21, Ctra. Xàtiva-Silla, km. 2, Xàtiva, 46800, Valencia, Spain
| | - F Xavier Lopez-Labrador
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain; Microbiology Department, University of Valencia Medical School, 13, Av. Blasco Ibáñez, 46010, Valencia, Spain; CIBERESP, Instituto de Salud Carlos III (Institute of Health Carlos III), Madrid, Spain
| | - Marisa Camaró
- Public Health Laboratory of Valencia, 21, Avenida Catalunya, 46020 Valencia, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencia Region, FISABIO-Public Health, 21, Avenida Catalunya, 46020, Valencia, Spain
| |
Collapse
|
6
|
Rebryk A, Kozyatnyk I, Njenga M. Emission of volatile organic compounds during open fire cooking with wood biomass: Traditional three-stone open fire vs. gasifier cooking stove in rural Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173183. [PMID: 38777046 DOI: 10.1016/j.scitotenv.2024.173183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Cooking with wood biomass fuels releases hazardous air pollutants, including volatile organic compounds (VOCs), that often disproportionally affect women and children. This study, conducted in Kwale and Siaya counties in Kenya, employed thermal desorption gas chromatography - mass spectrometry to analyse VOC emissions from cooking with a wood biomass three-stone open fire vs. top-lit updraft gasifier stove. In kitchens with adequate ventilation, total VOC levels increased from 35-252 μg∙m-3 before cooking to 2235-5371 μg∙m-3 during open fire cooking, whereas use of a gasifier stove resulted in reduced emissions from cooking by 48-77 % (506-2778 μg∙m-3). However, in kitchens with poor ventilation, there was only a moderate difference in total VOC levels between the two methods of cooking (9034-9378 μg∙m-3 vs. 6727-8201 μg∙m-3 for the three-stone open fire vs. gasifier stove, respectively). Using a non-target screening approach revealed significantly increased levels of VOCs, particularly benzenoids, oxygenated and heterocyclic compounds, when cooking with the traditional open fire, especially in closed kitchens, highlighting the effects of poor ventilation. Key hazardous VOCs included benzene, naphthalene, phenols and furans, suggesting potential health risks from cooking. In kitchens with good ventilation, use of the gasifier stove markedly reduced emissions of these priority toxic VOCs compared to cooking with an open fire. Thus, substituting open fires with gasifier stoves could help to improve household air quality and alleviate health risks. The study revealed that VOCs were present prior to cooking, possibly originating from previously cooked food (buildup) or the outside environment. VOC emissions were also exacerbated by reduced air flow in high humidity during rainfall, suggesting an area for further research. The findings underscore the importance of adopting cleaner cooking technologies and enhancing kitchen ventilation to mitigate the impacts of VOCs in developing countries.
Collapse
Affiliation(s)
- Andriy Rebryk
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| | - Ivan Kozyatnyk
- Department of Health, Medicine and Caring Sciences, Unit of Clinical Medicine, Occupational and Environmental Medicine, Linköping University, 581 83 Linköping, Sweden.
| | - Mary Njenga
- Centre for International Forestry Research-World Agroforestry (CIFOR-ICRAF), 30677-00100 Nairobi, Kenya; Wangari Maathai Institute for Peace and Environmental Studies, University of Nairobi, P.O. Box 2905-0065, Nairobi, Kenya
| |
Collapse
|
7
|
Siddiqui MU, Sibtain M, Ahmad F, Zushi Y, Nabi D. Screening Disinfection Byproducts in Arid-Coastal Wastewater: A Workflow Using GC×GC-TOFMS, Passive Sampling, and NMF Deconvolution Algorithm. J Xenobiot 2024; 14:554-574. [PMID: 38804286 PMCID: PMC11130967 DOI: 10.3390/jox14020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Disinfection during tertiary municipal wastewater treatment is a necessary step to control the spread of pathogens; unfortunately, it also gives rise to numerous disinfection byproducts (DBPs), only a few of which are regulated because of the analytical challenges associated with the vast number of potential DBPs. This study utilized polydimethylsiloxane (PDMS) passive samplers, comprehensive two-dimensional gas chromatography (GC×GC) coupled with time-of-flight mass spectrometry (TOFMS), and non-negative matrix factorization (NMF) spectral deconvolution for suspect screening of DBPs in treated wastewater. PDMS samplers were deployed upstream and downstream of the chlorination unit in a municipal wastewater treatment plant located in Abu Dhabi, and their extracts were analyzed using GC×GC-TOFMS. A workflow incorporating a multi-tiered, eight-filter screening process was developed, which successfully enabled the reliable isolation of 22 candidate DBPs from thousands of peaks. The NMF spectral deconvolution improved the match factor score of unknown mass spectra to the reference mass spectra available in the NIST library by 17% and facilitated the identification of seven additional DBPs. The close match of the first-dimension retention index data and the GC×GC elution patterns of DBPs, both predicted using the Abraham solvation model, with their respective experimental counterparts-with the measured data available in the NIST WebBook and the GC×GC elution patterns being those observed for the candidate peaks-significantly enhanced the accuracy of peak assignment. Isotopic pattern analysis revealed a close correspondence for 11 DBPs with clearly visible isotopologues in reference spectra, thereby further strengthening the confidence in the peak assignment of these DBPs. Brominated analogues were prevalent among the detected DBPs, possibly due to seawater intrusion. The fate, behavior, persistence, and toxicity of tentatively identified DBPs were assessed using EPI Suite™ and the CompTox Chemicals Dashboard. This revealed their significant toxicity to aquatic organisms, including developmental, mutagenic, and endocrine-disrupting effects in certain DBPs. Some DBPs also showed activity in various CompTox bioassays, implicating them in adverse molecular pathways. Additionally, 11 DBPs demonstrated high environmental persistence and resistance to biodegradation. This combined approach offers a powerful tool for future research and environmental monitoring, enabling accurate identification and assessment of DBPs and their potential risks.
Collapse
Affiliation(s)
- Muhammad Usman Siddiqui
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Muhammad Sibtain
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
| | - Farrukh Ahmad
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- California Environmental Protection Agency, Cypress, CA 90630, USA
| | - Yasuyuki Zushi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8569, Ibaraki, Japan
| | - Deedar Nabi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 48000, Pakistan
- BioEnergy & Environmental Laboratory (BEEL), Masdar Institute Campus, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| |
Collapse
|
8
|
Cecinato A, Romagnoli P, Cerasa M, Perilli M, Balducci C. Organic toxicants and emerging contaminants in hospital interiors before and during the SARS-CoV2 pandemic: alkanes and PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9713-9731. [PMID: 38194174 DOI: 10.1007/s11356-023-31735-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Indoor pollution and deposition dust (DD), in particular, are acquiring concern, due to long exposure time and importance of intake by humans through contact and ingestion. Hospitals look a special category of sites, owing to peculiar contaminants affecting them and to presence of people prone to adverse effects induced by toxicants. Four in-field campaigns aimed at understanding the chemical composition of DD were performed in five Italian hospitals. Measurements were performed before (autumn 2019), during (spring 2021), and after (winter 2022) the peak of SARS-CoV2 and when restrictions caused by pandemic were revoked (winter 2023). Parallel measurements were made outdoors (2022), as well as in a university and a dwelling. Targeted contaminants were n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while iso- and anteiso-alkanes were analyzed to assess the impact of tobacco smoking. Total n-alkanes ranged from 3.9 ± 2.3 to 20.5 ± 4.2 mg/g, with higher percentages of short chain homologs in 2019. PAHs ranged from 0.24 ± 0.22 to 0.83 ± 0.50 mg/g, with light congeners (≤ 228 a.m.u.) always exceeding the heavy ones (≥ 252 a.m.u.). According to carbon preference indexes, alkanes originated overall from anthropogenic sources. Microorganisms resulted to affect a hospital, and tobacco smoke accounted for ~ 4-20‰ of DD mass. As for PAH sources, the diagnostic concentration ratios suggested the concourse of biological matter burning and vehicle emission. Benzo[a]pyrene equivalent carcinogenic and mutagenic potencies of depositions at hospitals ranged ~ 9-39 μg/g and ~ 15-76 μg/g, respectively, which seems of concern for health. DD composition in hospitals was different from that outside the premises, as well as that found at university and at dwelling.
Collapse
Affiliation(s)
- Angelo Cecinato
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy.
| | - Paola Romagnoli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Marina Cerasa
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Mattia Perilli
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| | - Catia Balducci
- National Research Council of Italy, Institute of Atmospheric Pollution Research (CNR-IIA), Via Salaria Km 29.3, P.O. Box 10, 00015, Monterotondo, RM, Italy
| |
Collapse
|