1
|
Deng J, Yu J, Wang X, Yu D, Ma H, Wu Y, Yu C, Pu S. Spatial distribution and migration characteristics of heavy metals at an abandoned industrial site in the Southwest of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136447. [PMID: 39541881 DOI: 10.1016/j.jhazmat.2024.136447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The rapid acceleration of global industrialization has rendered heavy metal contamination at abandoned industrial sites a severe challenge, particularly in geologically complex and fragile karst regions of Southwest China, posing significant threats to ecosystems and public health. However, existing research lacks a comprehensive understanding of the spatial distribution and migration mechanisms of heavy metals in this region. In this study, 523 soil samples and 30 groundwater samples were collected, and the pollution levels were systematically assessed using the Geo-Accumulation Index, Single Pollution Index, and Nemerow Integrated Pollution Index. Horizontal and vertical spatial heterogeneity was explored through Moran's I and Voronoi polygon analysis. Furthermore, 3D geological modeling and groundwater flow simulations were employed to investigate the influence of hydrogeological conditions on contaminant migration. The results indicate elevated concentrations of Cd, Hg, Pb, and As in the surface layer, with concentrations initially decreasing and then increasing with depth, likely due to the presence of discontinuous clay layers. Moran's I revealed significant clustering effects at depths of 0.2 m and 4 m, while Voronoi analysis confirmed vertical heterogeneity. This study provides a scientific basis for pollution assessment and targeted remediation in karst regions.
Collapse
Affiliation(s)
- Jiayi Deng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Jingyang Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Xingtao Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Dong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - You Wu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, 28#, Xianning West Road, Xi'an, Shaanxi 710049, PR China
| | - Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, Sichuan 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
2
|
Zhu K, He Y, He Q, Lou W, Zhang Z, Zhang K. Effects of ionic strength and bentonite ratio on the migration of Cr(VI) in clayey soil-bentonite engineered barrier. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45310-45325. [PMID: 38961022 DOI: 10.1007/s11356-024-34170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (De) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.
Collapse
Affiliation(s)
- Kaofei Zhu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, P. R. China
- School of Geosciences and Info-Physics, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Yong He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, P. R. China.
- School of Geosciences and Info-Physics, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China.
| | - Qi He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, P. R. China
- School of Geosciences and Info-Physics, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- School of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wei Lou
- Hunan HIKEE Environmental Technology CO., LTD, Changsha, 410221, China
| | - Zhao Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, P. R. China
- School of Geosciences and Info-Physics, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Keneng Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha, P. R. China
- School of Geosciences and Info-Physics, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
3
|
Peng H, Yi L, Liu C. Spatial distribution, chemical fractionation and risk assessment of Cr in soil from a typical industry smelting site in Hunan Province, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:113. [PMID: 38478134 DOI: 10.1007/s10653-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024]
Abstract
The closure or relocation of many industrial enterprises has resulted in a significant number of abandoned polluted sites enriched in heavy metals to various degrees, causing a slew of environmental problems. Therefore, it is essential to conduct research on heavy metal contamination in the soil of industrial abandoned sites. In this study, soils at different depths were collected in a smelting site located in Hunan Province, China, to understand the Cr distribution, speciation and possible risks. The results revealed that the high-content Cr and Cr(VI) contamination centers were mainly concentrated near S1 (Sample site 1) and S5. The longitudinal migration law of chromium was relatively complex, not showing a simply uniform trend of decreasing gradually with depth but presenting a certain volatility. The vertical distribution characteristics of chromium and Cr(VI) pollution suggest the need for attention to the pollution from chromium slag in groundwater and deep soil layers. The results of different speciation of Cr extracted by the modified European Community Bureau of Reference (BCR) method showed that Cr existed primarily in the residual state (F4), with a relatively low content in the weak acid extraction state (F1). The correlation analysis indicated that Cr was affected by total Cr, pH, organic matter and total carbon during the longitudinal migration process. The RSP results revealed that the smelting site as a whole had a moderate level of pollution. Soil at depths of 2-5 m was more polluted than other soil layers. Consequently, it is necessary to treat the site soil as a whole, especially the subsoil layer (2-5 m). Health risk assessment demonstrated that the soil chromium pollution was hazardous to both adults and children, and the probability of carcinogenic and non-carcinogenic risk was relatively high in the latter group. As a result, children should be a group of special concern regarding the assessment and remediation of soil contaminated with Cr. This study can provide some insight into the contamination characteristics, ecological and health risks of chromium in contaminated soils and offer a scientific basis for the prevention and control of chromium pollution at abandoned smelting sites.
Collapse
Affiliation(s)
- Hanfang Peng
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| | - Liwen Yi
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China.
- Hunan Key Laboratory of Geospatial Big Data Mining and Application, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Chengai Liu
- School of Geographical Sciences, Hunan Normal University, No. 36 Lushan Road, Changsha, 410081, People's Republic of China
| |
Collapse
|
4
|
Zhu K, He Y, Feng D, Jiang W, Zhang K. Leaching behavior of copper tailings solidified/stabilized using hydantoin epoxy resin and red clay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118876. [PMID: 37678018 DOI: 10.1016/j.jenvman.2023.118876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Tailings produced by mining engineering and metal smelting industries have become a major challenge to the ecological environment and human health. Environmental compatibility, mechanical stability, and economic feasibility have restricted the treatment and reuse of tailings. A novel solidification/stabilization technology using hydantoin epoxy resin (HER) and red clay for copper tailing treatment was developed, and the leaching behaviors of solidified/stabilized copper tailings were investigated in this paper. The leaching characteristics were analyzed by toxicity characteristic leaching procedure (TCLP) leaching tests. Besides, the influence of red clay content and acid rain on the permeability characteristics and leaching characteristics were investigated based on flexible-wall column tests and microstructure tests. The results showed that the copper tailings solidification/stabilization technology with HER and red clay had excellent performances in toxicity stabilization. The leaching concentration of Cu in TCLP tests and flexible wall column tests remained within the limit specified by the Chinese national standard, and the concentration of Cu decreased significantly with the increase of the red clay content. Moreover, acid rain leaching changed the mineral composition and microstructure of solidified tailings, and the porosity of the samples increased with the dissolution of soluble minerals. Additionally, the hydraulic conductivities decreased slightly with the increase in the pH value of acid rain, and the solidified sample with 5% red clay had the lowest hydraulic conductivity.
Collapse
Affiliation(s)
- Kaofei Zhu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Yong He
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China.
| | - Deshan Feng
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Wenqiang Jiang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| | - Keneng Zhang
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Changsha 410083, PR China; School of Geosciences and Info-Physics, Central South University, Changsha 410083, PR China
| |
Collapse
|