1
|
Tripathi M, Singh P, Pathak S, Manimekalai R, Garg D, Dashora K. Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges. J Xenobiot 2025; 15:30. [PMID: 39997373 PMCID: PMC11856478 DOI: 10.3390/jox15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies-including advanced biotechnological approaches-and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | | | - Diksha Garg
- Department of Microbiology, DAV University, Jalandhar 144012, Punjab, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
2
|
Lim WY, Lau EV, Ramakrishnan N. Electrophoresis and Quartz Crystal Microbalance Instrumentation to Sense Nanoplastics in Water. Anal Chem 2024; 96:19213-19219. [PMID: 39607411 DOI: 10.1021/acs.analchem.4c05466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We report a Technical Note on detecting nanoplastics in water samples through electrophoresis and quartz crystal microbalance (QCM) instrumentation. We conducted electrophoresis experiments by immersing a QCM in a sample of ultrapure water containing polyethylene (PE) nanoplastics. It was interesting to observe that nanoplastics were attracted toward the QCM and adhered to one side of the QCM electrode. The attached particles introduced mass loading to the QCM and were characterized by a decrease in resonance frequency of the crystal. Furthermore, when a small region around the center of electrode was alone exposed for direct contact in water and the rest of the electrode was masked using photoresist, the nanoplastics were concentrated only in the exposed electrode region, significantly enhancing detection sensitivity. To further investigate the applicability for real-life water samples, we experimented with the technique with readily available bottled drinking water and mineral water, where we spiked these water samples with nanoplastics. It was observed that the resonance frequency shifts were significantly larger for samples with nanoplastics compared to samples without nanoplastics. In addition, Raman spectroscopy and microscopy imaging were used to further confirm the presence and locations of nanoplastics on the electrode surface. This study highlights the combination of electrophoresis and QCM effectiveness in detecting nanoplastics across different water types and their potential for broader applications in environmental monitoring.
Collapse
Affiliation(s)
- Wei Yin Lim
- Micro and Nano Devices Laboratory, Department of Electrical and Robotics Engineering, Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Ee Von Lau
- School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Narayanan Ramakrishnan
- Micro and Nano Devices Laboratory, Department of Electrical and Robotics Engineering, Electrical and Computer Systems Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Wang L, Gao J, Wu WM, Luo J, Bank MS, Koelmans AA, Boland JJ, Hou D. Rapid Generation of Microplastics and Plastic-Derived Dissolved Organic Matter from Food Packaging Films under Simulated Aging Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20147-20159. [PMID: 39467053 DOI: 10.1021/acs.est.4c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we show that low-density polyethylene films, a prevalent choice for food packaging in everyday life, generated high numbers of microplastics (MPs) and hundreds to thousands of plastic-derived dissolved organic matter (DOM) substances under simulated food preparation and storage conditions. Specifically, the plastic film generated 66-2034 MPs/cm2 (size range 10-5000 μm) under simulated aging conditions involving microwave irradiation, heating, steaming, UV irradiation, refrigeration, freezing, and freeze-thaw cycling alongside contact with water, which were 15-453 times that of the control (plastic film immersed in water without aging). We also noticed a substantial release of plastic-derived DOM. Using ultrahigh-resolution mass spectrometry, we identified 321-1414 analytes with molecular weights ranging from 200 to 800 Da, representing plastic-derived DOM containing C, H, and O. The DOM substances included both degradation products of polyethylene (including oxidized forms of oligomers) and toxic plastic additives. Interestingly, although no apparent oxidation was observed for the plastic film under aging conditions, plastic-derived DOM was more oxidized (average O/C increased by 27-46%) following aging with a higher state of carbon saturation and higher polarity. These findings highlight the future need to assess risks associated with MP and DOM release from plastic wraps.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
de Vos ES, Mulders AGMGJ, Koning AHJ, Smit HS, Rossem LV, Steegers-Theunissen RPM. Periconceptional maternal intake of ultra-processed foods, energy and macronutrients the impact on imaging markers of early utero-placental vascular development: The rotterdam periconception cohort. Clin Nutr 2024; 43:46-53. [PMID: 39321745 DOI: 10.1016/j.clnu.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND & AIMS The quantity and quality of maternal nutrition in the periconception period is an important determinant for embryonic and foetal development and subsequent pregnancy course and outcome. The intake of ultra-processed foods (UPF) has increased worldwide and adverse health outcomes have been reported. However, the impact of UPF intake on the placenta, essential for prenatal nourishment, is unknown. Therefore, we aim to investigate associations between the periconceptional maternal intake of UPF, energy and related macronutrients, and first-trimester utero-placental vascular development. METHODS We included 214 ongoing pregnancies in the Virtual Placenta study, a subcohort of the Rotterdam periconception cohort. At enrollment, participants filled out a food frequency questionnaire from which we calculated the average daily energy from UPF, total energy intake and macronutrient intake from UPF. At 7-9-11 weeks of gestation, we performed sequential three-dimensional power Doppler ultrasounds of the first-trimester utero-placental vasculature. Virtual Organ Computer-aided AnaLysis (VOCAL) software, Virtual Reality segmentation and a skeletonization algorithm were applied to measure placental volume (PV), utero-placental vascular volume (uPVV) and generate the utero-placental vascular skeleton (uPVS). Absolute vascular morphology was quantified by assigning a morphologic characteristic to each voxel in the uPVS (end-, bifurcation-, crossing- or vessel point) and used to calculate density of vascular branching. Linear mixed models adjusted for confounders were used to investigate associations between maternal intake of UPF, total energy and macronutrients from UPF and PV, uPVV and uPVS characteristics. RESULTS Energy intake from UPF and total energy intake were not consistently associated with imaging markers of utero-placental vascular development. Higher carbohydrate intake of 10 g/day from UPF was associated with increased uPVS trajectories (end points (β = 0.34, 95%CI = 0.07; 0.61), bifurcation points (β = 0.38, 95%CI = 0.05; 0.70), vessel points (β = 0.957, 95%CI = 0.21; 1.71). No associations were observed with PV. CONCLUSIONS Against our hypothesis, periconceptional maternal intake of UPF and total energy were not convincingly associated with impaired first-trimester utero-placental vascular development. Remarkably, the increased intake of carbohydrates from UPF, which is often considered 'unhealthy', is positively associated with first-trimester utero-placental vascular development. Given the complexity of diet, further research should elucidate what underlies these findings to be able to interpret how nutrition may impact utero-placental vascular development in early pregnancy. CLINICAL TRIAL NUMBER This study is registered at the Dutch Trial Register (NTR6854).
Collapse
Affiliation(s)
- Eline S de Vos
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Annemarie G M G J Mulders
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Anton H J Koning
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Hilco S Smit
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands; Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Régine P M Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus MC University Medical Center, Rotterdam, PO Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Hayder M, van Wezel AP, Gruter GJM, Astefanei A. What if you eat nanoplastics? Simulating nanoplastics fate during gastrointestinal digestion. CHEMOSPHERE 2024; 365:143277. [PMID: 39260594 DOI: 10.1016/j.chemosphere.2024.143277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Despite our growing awareness of micro-and nanoplastics presence in food and beverages, the fate of nanoplastics (NPs) in the human gastrointestinal tract (GIT) remains poorly investigated. Changes of nanoplastics size upon digestive conditions influence the potential of absorption through the intestine. In this study, polymer nanoparticles with different physicochemical properties (size, surface and chemistry) were submitted to gastrointestinal digestion (GID) simulated in vitro. Their agglomeration behaviour was measured with a unique set of analytical approaches, allowing to study NPs' interactions with the digestive enzymes. Smaller NPs agglomerated more, narrowing the overall particle size distribution of smaller and larger NPs. NPs of different polymers exhibited heteroagglomeration. Digestive enzymes interact with the NPs, forming large but fragile agglomerates. In presence of the enzymes, even acid-functionalized NPs, typically stable in harsh conditions, agglomerated similarly to the non-functionalized PS NPs. These results highlight the role of the GID in increasing the effective size of ingested NPs, potentially reducing their ability to pass through the cell membranes. Our findings address a critical knowledge gap in nanoplastics oral uptake potential, providing a solid technical foundation for their characterization.
Collapse
Affiliation(s)
- Maria Hayder
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| | - Gert-Jan M Gruter
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands; Avantium Support BV, Zekeringstraat 29, 1014BV, Amsterdam, the Netherlands.
| | - Alina Astefanei
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Xu S, Cui B, Zhang W, Liu R, Liu H, Zhu X, Huang X, Liu M. Microplastics in the atmospheric of the eastern coast of China: different function areas reflecting various sources and transport. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:461. [PMID: 39352598 DOI: 10.1007/s10653-024-02217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Suspended atmospheric microplastics (SAMPs) display varying occurrence characteristics on different underlying surfaces in urban areas. This study investigated the occurrence characteristics, source apportionment, and transportation patterns of SAMPs in two typical underlying surfaces: the downtown area (Site T) and the industrial area (Site C) of a coastal city in China. In the spring of 2023, a total of 32 types comprising 1325 SAMPs were detected. The average MP abundances were found to be 3.74 ± 2.86 n/m3 in Site T and 2.67 ± 1.68 n/m3 in Site C. In Site T, SAMPs attributed to living source constituted 78.05%, while industry was the main source in Site C with a proportion reaching 42.89%, consistent with the functional zoning of the underlying surface. Furthermore, HYSPLIT analysis revealed that there was no significant difference between these two sites in long-distance horizontal transport affected by external airflow regardless of altitude; conversely, PCA indicated a notable correlation between vertical velocity and both abundance and species diversity. According to the hourly average wind speeds, the maximum transmission distance was computed as 350 km for updraft and the minimum transmission distances was as low as 32 m for downdraft. Subsequently, the coincidence between the source proportion of SAMPs on random day and meteorological parameters confirmed the synergistic impact on SAMPs transport influenced by functional zoning, geographic environment, and vertical velocity.
Collapse
Affiliation(s)
- Sheng Xu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Bowen Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weixin Zhang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Ruijing Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Hao Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xiaowei Zhu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Xuqing Huang
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China
| | - Minyi Liu
- College of Ecology Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350108, China.
| |
Collapse
|
7
|
Sekar V, Shaji S, Sundaram B. Microplastic prevalence and human exposure in the bottled drinking water in the west Godavari region of Andhra Pradesh, India. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104346. [PMID: 38670001 DOI: 10.1016/j.jconhyd.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microplastics (MPs) are widespread, minute plastic particles present in various aquatic environments, raising concerns about their effect on human health and ecosystems. The detrimental effects of MPs on the environment, include the contamination of ecosystems, harm to aquatic life through ingestion, potential disruption of food chains, and long-term ecological consequences. Despite numerous studies confirming the MP's presence in aquatic environments, research specifically focused on MPs in bottled drinking water (BDW) is limited. Research on MPs in drinking water is vital to assess potential health risks and develop strategies for ensuring water safety and quality. This study fills a research gap by investigating microplastics (MPs) in nine brands of BDW in the West Godavari region of Andhra Pradesh, India. The average MP concentration in BDW was found to be 2.89 ± 0.48 items/L, with fibers being the predominant shape and sizes ranging from 500 to 1000 μm. Transparent and blue were the most common colors. From ATR-FTIR analysis, the dominant polymer found was polypropylene (PP) followed by polyethylene terephthalate (PET). The human risk assessment was also calculated using the formula of Estimated daily intake (EDI) and Lifetime intake (LTI). The calculation found that the EDI of MPs for children and adults ranged from 0.041 to 0.291 MPs per kilogram per day and 0.019 to 0.133 MPs per kilogram per day, respectively. The mean LTI of MP consumption of an individual, ranged from 17,958 to 2,54,861 MPs, considering an average age of 75 years. The current findings offer valuable information for ongoing evaluations of the potential human risks linked to MP exposure.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Sheha Shaji
- Research Scholar, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India
| | - Baranidharan Sundaram
- Assistant Professor, Department of Civil Engineering, National Institute of Technology, Andhra Pradesh, India.
| |
Collapse
|