1
|
Chu TTH, Nguyen TBH, Huong PT. An approach for the treatment of chlorpyrifos and atrazine pesticides using graphitic carbon nitride photocatalyst. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025; 60:200-207. [PMID: 40233034 DOI: 10.1080/03601234.2025.2491190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
This study evaluated an effective approach for the removal of chlorpyrifos (Chp) and atrazine (Atz) pesticides using graphitic carbon nitride photocatalyst (g-CN). Experimental results showed that under solar light, g-CN was able to remove 82.4% of Chp and 73.6% of Atz at an initial concentration of 10 mg L-1. It also exhibited that the total organic carbon removal efficiency was 95.3% for Chp and 84.7% for Atz after 150 min. Besides, the removal of Chp and Atz is more effective under solar light, with a degradation efficiency of around 10% higher than that of visible light. The characterization results confirmed the high purity of the g-CN photocatalyst and its strong UV light absorption ability, with some extension into the visible region. In addition, recent methods used for the removal of Chp and Atz were discussed and evaluated. It showed that the photocatalytic process is the most widely used method for removing Chp and Atz compared to other techniques. However, the development of suitable photocatalytic materials based on g-CN should be further explored to enhance their efficiency under visible light.
Collapse
Affiliation(s)
- Thi Thu Hien Chu
- Department of Chemistry, Faculty of Building Materials, Ha Noi University of Civil Engineering (HUCE), Hanoi, Vietnam
| | - Tuan B H Nguyen
- VKTECH Research Center, Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Pham Thi Huong
- Department of Materials Science and Engineering, Gachon University, Seongnam, South Korea
| |
Collapse
|
2
|
Zhang D, Zhang C, Lai X, Wei X, Zhuang T, Lv Z. Engineering single-atom rhodium-C 3N sites on covalent organic frameworks for boosting photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 676:691-700. [PMID: 39059276 DOI: 10.1016/j.jcis.2024.07.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Developing efficient and stable photocatalysts for solar hydrogen (H2) energy conversion is meaningful but challenging. Herein, a novel photocatalyst with Rh single atoms (Rh SAs) anchoring in β-ketoimine-linked covalent organic frameworks (TpPa-1) via RhC3N sites is proposed for achieving highly efficient H2 production in phosphate buffer saline (PBS) solution with sodium ascorbate (SA) as sacrificial agent under visible light. TpPa-1 with abundant N and C-chelate sites provides a reliable basis for anchoring Rh single atoms. The optimized Rh SAs/TpPa-1 exhibits an outstanding hydrogen evolution activity (1836.81μmol h-1 g-1), 9.34 and 2.27 folds enhancement than that of pristine TpPa-1 and Rh NPs/TpPa-1. X-ray absorption fine structure (XAFS) combined with density functional theory (DFT) calculations reveal that the significant improvement in H2 evolution performance on Rh SAs/TpPa-1 originates from the unique RhC3N coordination environment, promoting the charge separation and migration at the atomic interface, and thus decreasing the energy barrier for H* formation. Notably, in situ Raman technique confirmed Rh SAs was the main active sites (RhH) for proton reduction.
Collapse
Affiliation(s)
- Delu Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Zhang
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaoning Lai
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiayang Wei
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tao Zhuang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, Shandong, China
| | - Zhiguo Lv
- State Key Laboratory Base for Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
3
|
Teymourinia H, Akram Z, Ramazani A, Amani V. Electrochemical measurement of morphine using a sensor fabricated from the CuS/g-C 3N 5/Ag nanocomposite. Sci Rep 2024; 14:27361. [PMID: 39521921 PMCID: PMC11550800 DOI: 10.1038/s41598-024-78585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Morphine, as one of the most important narcotic drugs, significantly affects the nervous system and increases euphoria, which raises the likelihood of its misuse. Therefore, its measurement is of great importance. In this work, a new electrochemical sensor based on a nanocomposite of CuS/g-C3N5/AgNPs was developed for modifying Screen printed carbon electrodes (SPCEs) and used for the measurement of morphine through cyclic voltammetry and differential pulse voltammetry. Various analytical methods initially characterized the nanocomposite. The prepared sensor, which also has an extensive surface area, achieved a detection limit of 0.01 µM for morphine in a concentration range of 0.05-100 µM at pH 7. Besides its excellent capability in measuring morphine in real samples, the sensor exhibits good stability, reproducibility, and repeatability. The presence of CuS, due to its excellent high surface area alongside silver nanoparticles, leads to an increase in the conductivity of the g-C3N5 modified electrode, resulting in an increased oxidative current of morphine at the surface of the prepared sensor. Therefore, measuring low concentrations of morphine with this sensor was made possible. Additionally, measuring morphine without interference from various species is a strong point of the electrochemical sensor for morphine detection, and combined with the simplicity and ease of the method, it allows for morphine measurements to be conducted in the shortest possible time.
Collapse
Affiliation(s)
- Hakimeh Teymourinia
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| | - Zakyeh Akram
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791, Zanjan, Iran.
| | - Vahid Amani
- Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
| |
Collapse
|
4
|
Hamza AM, Alshamsi HA. Design of novel Z-scheme g-C 3N 4/TiO 2/CuCo 2O 4 heterojunctions for efficient visible light-driven photocatalyic degradation of rhodamine B. Sci Rep 2024; 14:23596. [PMID: 39384876 PMCID: PMC11464525 DOI: 10.1038/s41598-024-73915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
One of the most important environmental challenges that needs to be resolved is the industrial discharge of synthetic dyes. Graphitic carbon nitride (g-C3N4), Titanium dioxide (TiO2) and flower-like copper oxide (CuO)/copper cobaltite (CuCo2O4) nanocomposites were synthesized in order to synthesis an effective visible light driven photocatalyst that could degrade Rhodamin B (Rh.B) dye under simulated solar light irradiation. The SEM and TEM results verifies that the flower-like CuO/CuCo2O4 (CCO) structure and g-C3N4/TiO2 (g-CN/TO) generated a smart hybrid structure with superior g-CN distribution. According to the photocatalytic studies, g- C3N4/TiO2/CuO/CuCo2O4 (g-CN/TO/CCO) shows good photodegradation of Rh.B dye (99.9%) in minmal times (1 h) in CCO: g-CN/TO (2:1) ratio by Z-Scheme mechanism. The enhanced visible light absorption and effective electron-hole pair separation provided by the synergistic dispersion of CuO/CuCo2O4 and g-C3N4 can be attributed to the improved photocatalytic performances. These novel insights into g-CN/TO/CCO based photocatalysts are useful for treating industrial effluent.
Collapse
Affiliation(s)
- Aws M Hamza
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq
- Ministry of Education, General Directorate for Education in Babylon, Babylon, Iraq
| | - Hassan A Alshamsi
- Department of Chemistry, College of Education, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| |
Collapse
|
5
|
Negash A, Derseh LM, Tedla A, Yassin JM. Eco-friendly synthesis of CuO/Bi 2O 3 nanocomposite for efficient photocatalytic degradation of rhodamine B dye. Sci Rep 2024; 14:23393. [PMID: 39379438 PMCID: PMC11461685 DOI: 10.1038/s41598-024-74408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plant-mediated synthesized materials are receiving more attention than conventional ones due to their wide availability, ease of access, simple preparation methods, environmental benign, and possess superior physicochemical properties. In this work, plant extract-mediated CuO, Bi2O3, and CuO/Bi2O3 nanocomposite samples were successfully synthesized using bamboo leaves extract as a capping agent. These materials were utilized for the photodegradation of Rhodamine B (RhB) dye, which served as a model organic dye pollutant. The physicochemical characterization techniques such as XRD, SEM-EDS, FTIR, and DRS-UV-vis spectrophotometry provide insight into the crystal structure, morphology, surface functional groups, and optical properties. These analyses confirm the effective formation of CuO, Bi2O3, and CuO/Bi2O3 materials. Surprisingly, upon calcination at 450 °C for 4 h, the color of the nanocomposite changed from pale green to gray greenish, providing evidence for the formation of the CuO in CuO/Bi2O3 nanocomposite. The photocatalytic optimization parameters such as pH (4), catalyst load (35 mg), irradiation time (180 min) and concentration of RhB (10 mg L-1) dye were investigated. By coupling CuO with Bi2O3 nanoparticles resulted in an improved photocatalytic property for the degradation of RhB dye under optimal conditions. As a result, CuO/Bi2O3 nanocomposite exhibited a significantly boosted photocatalytic degradation efficiency (95.6%) compared to pure CuO (40.2%) and Bi2O3 (80.5%) photocatalysts, with good reusability. For comparison purpose, the photocatalytic degradation of RhB dye using selected photocatalyst was evaluated under dark and sunlight systems. This eco-friendly approach holds great potential for synthesis new nanocomposite with modified properties, thereby enabling the practical application of high-efficiency photocatalysts. The plausible mechanism of the electrons and holes transfer was proposed.
Collapse
Affiliation(s)
- Asfaw Negash
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - Lemma M Derseh
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - Abebe Tedla
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - Jemal M Yassin
- Department of Chemistry, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia.
| |
Collapse
|
6
|
Showman MS, Omara RY, El-Ashtoukhy ESZ, Farag HA, El-Latif MMA. Formulation of silver phosphate/graphene/silica nanocomposite for enhancing the photocatalytic degradation of trypan blue dye in aqueous solution. Sci Rep 2024; 14:15885. [PMID: 38987354 PMCID: PMC11237074 DOI: 10.1038/s41598-024-66054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Photocatalytic degradation of several harmful organic compounds has been presented as a potential approach to detoxify water in recent decades. Trypan Blue (TB) is an acidic azo dye used to distinguish live cells from dead ones and it's classified as a carcinogenic dye. In this study, silver phosphate (Ag3PO4) nanoparticles and novel Ag3PO4/graphene/SiO2 nanocomposite have been successfully prepared via simple precipitation method. Afterward, their physical properties, chemical composition, and morphology have been characterized using SEM, EDS, TEM, SAED, BET, XRD, FTIR and UV-VIS spectroscopy. The specific surface area of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite were reported to be 1.53 and 84.97 m2/g, respectively. The band gap energy of Ag3PO4 and Ag3PO4/G/SiO2 nanocomposite was measured to be 2.4 and 2.307 eV, respectively. Photocatalytic degradation of Trypan blue (TB) was studied at different parameters such as pH, catalyst dosage, initial concentration, and contact time. The results showed that, at initial dye concentration of 20 ppm, pH = 2, and using 0.03 g of Ag3PO4/G/SiO2 as a photocatalyst, the degradation percent of TB dye in the aqueous solution was 98.7% within 10 min of light exposure. Several adsorption isotherms such as Langmuir, Freundlich, and Temkin adsorption isotherms have been tested in addition to the photocatalytic degradation kinetics. Both catalysts were found to follow the Langmuir isotherm model and pseudo-second-order kinetic model. Finally, the possible photocatalytic performance mechanism of Ag3PO4/G/SiO2 was proposed.
Collapse
Affiliation(s)
- M S Showman
- Fabrication Technology Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - R Y Omara
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - E-S Z El-Ashtoukhy
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - H A Farag
- Chemical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| | - M M Abd El-Latif
- Fabrication Technology Department, Advanced Technology and New Materials Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
7
|
Singh R, Yadav RK, Satyanath, Singh S, Shahin R, Umar A, Ibrahim AA, Singh O, Gupta NK, Singh C, Baeg JO, Baskoutas S. Nature-inspired polymer photocatalysts for green NADH regeneration and nitroarene transformation. CHEMOSPHERE 2024; 353:141491. [PMID: 38395365 DOI: 10.1016/j.chemosphere.2024.141491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/20/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Photocatalysis has emerged as a promising approach for generating solar chemical and organic transformations under the solar light spectrum, employing polymer photocatalysts. In this study, our aim is to achieve the regeneration of NADH and fixation of nitroarene compounds, which hold significant importance in various fields such as pharmaceuticals, biology, and chemistry. The development of an in-situ nature-inspired artificial photosynthetic pathway represents a challenging task, as it involves harnessing solar energy for efficient solar chemical production and organic transformation. In this work, we have successfully synthesized a novel artificial photosynthetic polymer, named TFc photocatalyst, through the Friedel-Crafts alkylation reaction between triptycene (T) and a ferrocene motif (Fc). The TFC photocatalyst is a promising material with excellent optical properties, an appropriate band gap, and the ability to facilitate the regeneration of NADH and the fixation of nitroarene compounds through photocatalysis. These characteristics are necessary for several applications, including organic synthesis and environmental remediation. Our research provides a significant step forward in establishing a reliable pathway for the regeneration and fixation of solar chemicals and organic compounds under the solar light spectrum.
Collapse
Affiliation(s)
- Ranjeet Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rajesh K Yadav
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India.
| | - Satyanath
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Satyam Singh
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Rehana Shahin
- Department of Chemistry and Environmental Science, Madan Mohan Malviya University of Technology, Gorakhpur, 273010, U. P., India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA.
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Omvir Singh
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Navneet K Gupta
- Centre for Sustainable Technologies, Indian Institute of Science, Gulmohar Marg, Mathikere, Bengaluru, 560012, India
| | - Chandani Singh
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jin OoK Baeg
- Artificial Photosynthesis Research group, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea.
| | | |
Collapse
|
8
|
Truong DH, Nguyen TLA, Alharzali N, Al Rawas HK, Taamalli S, Ribaucour M, Nguyen HL, El Bakali A, Ngo TC, Černušák I, Louis F, Dao DQ. Theoretical insights into the HO ●-induced oxidation of chlorpyrifos pesticide: Mechanism, kinetics, ecotoxicity, and cholinesterase inhibition of degradants. CHEMOSPHERE 2024; 350:141085. [PMID: 38163466 DOI: 10.1016/j.chemosphere.2023.141085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
The oxidation of the common pesticide chlorpyrifos (CPF) initiated by HO● radical and the risks of its degradation products were studied in the gaseous and aqueous phases via computational approaches. Oxidation mechanisms were investigated, including H-, Cl-, CH3- abstraction, HO●-addition, and single electron transfer. In both phases, HO●-addition at the C of the pyridyl ring is the most energetically favorable and spontaneous reaction, followed by H-abstraction reactions at methylene groups (i.e., at H19/H21 in the gas phase and H22/H28 in water). In contrast, other abstractions and electron transfer reactions are unfavorable. However, regarding the kinetics, the significant contribution to the oxidation of CPF is made from H-abstraction channels, mostly at the hydrogens of the methylene groups. CPF can be decomposed in a short time (5-8 h) in the gas phase, and it is more persistent in natural water with a lifetime between 24 days and 66 years, depending on the temperature and HO● concentration. Subsequent oxidation of the essential radical products with other oxidizing reagents, i.e., HO●, NO2●, NO●, and 3O2, gave primary neutral products P1-P15. Acute and chronic toxicity calculations estimate very toxic levels for CPF and two degradation products, P7w and P12w, in aquatic systems. The neurotoxicity of these products was investigated by docking and molecular dynamics. P7w and P12w show the most significant binding scores with acetylcholinesterases, while P8w and P13w are with butyrylcholinesterase enzyme. Finally, molecular dynamics illustrate stable interactions between CPF degradants and cholinesterase enzyme over a 100 ns time frame and determine P7w as the riskiest degradant to the neural developmental system.
Collapse
Affiliation(s)
- Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Nissrin Alharzali
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Hisham K Al Rawas
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Sonia Taamalli
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France.
| | - Marc Ribaucour
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Hoang Linh Nguyen
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam; Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Viet Nam
| | - Abderrahman El Bakali
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Ivan Černušák
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia
| | - Florent Louis
- Univ. Lille, CNRS, UMR 8522, Physico-Chimie des Processus de Combustion et de L'Atmosphère - PC2A, 59000, Lille, France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Viet Nam
| |
Collapse
|
9
|
Herrera W, Vera J, Hermosilla E, Diaz M, Tortella GR, Dos Reis RA, Seabra AB, Diez MC, Rubilar O. The Catalytic Role of Superparamagnetic Iron Oxide Nanoparticles as a Support Material for TiO 2 and ZnO on Chlorpyrifos Photodegradation in an Aqueous Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:299. [PMID: 38334570 PMCID: PMC10856829 DOI: 10.3390/nano14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Chlorpyrifos (CP) is a globally used pesticide with acute toxicity. This work studied the photocatalytic degradation of CP using TiO2, ZnO nanoparticles, and nanocomposites of TiO2 and ZnO supported on SPIONs (SPION@SiO2@TiO2 and SPION@SiO2@ZnO). The nanocomposites were synthesized by multi-step incipient wetness impregnation. The effects of the initial pH, catalyst type, and dose were evaluated. The nanocomposites of SPION@SiO2@TiO2 and SPION@SiO2@ZnO showed higher CP photodegradation levels than free nanoparticles, reaching 95.6% and 82.3%, respectively, at pH 7. The findings indicate that iron oxide, as a support material for TiO2 and ZnO, extended absorption edges and delayed the electron-hole recombination of the nanocomposites, improving their photocatalytic efficiency. At the same time, these nanocomposites, especially SPION@SiO2@TiO2, showed efficient degradation of 3,5,6-trichloropyridinol (TCP), one of the final metabolites of CP. The stability and reuse of this nanocomposite were also evaluated, with 74.6% efficiency found after six cycles. Therefore, this nanomaterial represents an eco-friendly, reusable, and effective alternative for the degradation of chlorpyrifos in wastewater treatment.
Collapse
Affiliation(s)
- Wence Herrera
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
| | - Joelis Vera
- Programa de Doctorado en Ciencias de la Ingeniería Mención Bioprocesos, Universidad de la Frontera, Temuco 4780000, Chile;
| | - Edward Hermosilla
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Marcela Diaz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
| | - Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - Amedea B. Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, SP, Brazil; (R.A.D.R.); (A.B.S.)
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente CIBAMA-BIOREN, Universidad de La Frontera, Temuco 4780000, Chile; (E.H.); (M.D.); (G.R.T.); (M.C.D.)
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|