1
|
Lin D, Zhuang Z, Yu N, Wang Z, Song W, Du X. Comprehensive effects of microplastics on algae-laden surface water treatment by coagulation-ultrafiltration combined process: Algae cultivation, coagulation performance and membrane fouling development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171553. [PMID: 38458443 DOI: 10.1016/j.scitotenv.2024.171553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
In coastal areas, the surface water has been simultaneously exposed to the algae blooms caused by eutrophication and the microplastics (MPs) pollution originating from active human activities. As a practical alternative to address these issues in drinking water plant, coagulation-ultrafiltration combined process is still confronted with the limited understanding about the comprehensive effects of MPs on algae-laden surface water (ASW) treatment. Considering the migration of MPs in nature environment and drinking water treatment process, this study first aims to systematically investigate the influence of MPs on algae cultivation, coagulation performance and membrane fouling development. The results of algae cultivation indicate that MPs stimulated the algae activity by 58 % and then constantly suppressed the secretion of protein-like, humic-like and polysaccharide-like metabolites. The variation of particle size distribution and zeta potential confirm that MPs acted as nuclei to facilitate the development of large coagulation flocs with an increasing average size from 82.6 μm to 107.6 μm, during which the negatively charged pollutants were neutralized and removed from ASW. According to the SEM images, MPs could destroy the structure of fouling layer on 50 kDa membranes during the filtration of ASW coagulation effluent. Its synergistic effect with the enhanced coagulation performance and the suppressed EOM secretion contributed to the alleviation of membrane fouling caused by overlapped large-sized foulants. However, the interaction between the enriched organic foulants by MPs and the deposited coagulants on 300 kDa membranes facilitated the development of cake layer, leading to the deterioration of membrane permeability. This study emphasizes the importance in concerning the existence of MPs during the treatment of ASW by coagulation-ultrafiltration combined process and their exact influence in water purification efficiency.
Collapse
Affiliation(s)
- Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhongjian Zhuang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Nan Yu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Bai Y, Wang RN, Wu YH, Xue S, Chen Z, Hu HY. Critical fractions in reclaimed water responsible for membrane fouling: Isolation, fouling characteristics, quantitative and qualitative variations in practical application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169822. [PMID: 38185154 DOI: 10.1016/j.scitotenv.2023.169822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 μm and > 0.45 μm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Rui-Ning Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, PR China
| |
Collapse
|