1
|
Liu L, Yu W, Zhang Z, Li Q, Peng C, Wu K, Liu D, He S, Liu N, Li X. Ultrasonic-Assisted K + Modification of Industrial Hemp Stalk Hydrothermal Biochar for Highly Effective Adsorption of Pb 2. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2348. [PMID: 40429085 PMCID: PMC12112817 DOI: 10.3390/ma18102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Biochar modification represents an effective approach for enhancing adsorption capacity. In the research, industrial hemp straw-derived biochar was synthesized through hydrothermal carbonization coupled with ultrasound-assisted KOH activation, demonstrating exceptional Pb2+ adsorption efficiency. The optimal HBS50-K0.5M exhibited excellent adsorption performance, achieving the maximum adsorption capacity of 345.8 mg/g within 2 h. The etching effect of KOH on the biochar surface increased the O-containing functional groups, which enhanced the adsorption of Pb2+. The adsorption kinetics revealed that the adsorption process of Pb2+ was aligned with the pseudo-second-order kinetics as well as the Langmuir model. The complexation, ion exchange, π-π interaction, as well as electrostatic interaction participated in the adsorption. This study demonstrates that ultrasound-assisted KOH-activated biochar has great potential for removing Pb2+ from wastewater.
Collapse
Affiliation(s)
- Le Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.L.); (K.W.); (D.L.)
| | - Wanjin Yu
- State Key Laboratory of Fluorinated Greenhouse Gases Replacement and Control Treatment, Zhejiang Research Institute of Chemical Industry, Hangzhou 310023, China;
| | - Zheren Zhang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China; (Z.Z.); (S.H.)
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (Q.L.); (C.P.)
| | - Qiyao Li
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (Q.L.); (C.P.)
| | - Chun Peng
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (Q.L.); (C.P.)
| | - Kaisheng Wu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.L.); (K.W.); (D.L.)
| | - Duoduo Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.L.); (K.W.); (D.L.)
| | - Sufang He
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China; (Z.Z.); (S.H.)
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; (Q.L.); (C.P.)
| | - Nengsheng Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China; (L.L.); (K.W.); (D.L.)
| | - Xiang Li
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China; (Z.Z.); (S.H.)
| |
Collapse
|
2
|
Deng S, Ren B, Cheng S, Hou B, Deng R, Zhu G. Study on the adsorption performance of carbon-magnetic modified sepiolite nanocomposite for Sb(V), Cd(II), Pb(II), and Zn(II): Optimal conditions, mechanisms, and practical applications in mining areas. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137129. [PMID: 39793393 DOI: 10.1016/j.jhazmat.2025.137129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
A carbon-magnetic modified sepiolite nanocomposite (γ-Fe2O3/SiO2-Mg(OH)2@BC) was synthesized using a hydrothermal method, consisting of γ-Fe2O3, activated sludge biochar (BC), and alkali-modified sepiolite. Its ability to remove heavy metals such as Sb(V), Pb(II), Cd(II), and Zn(II) was investigated through adsorption experiments. Using response surface optimization, the optimal adsorption conditions were determined: adsorption time = 3.78 h, pH = 2.63, initial concentration = 15.78 mg/L, temperature = 35.14°C, and adsorbent dosage = 100.71 mg. Characterization results revealed that the main adsorption mechanisms included complexation, π-π interactions, and electrostatic attraction. Kinetic and isotherm model analyses indicated that the adsorption process of γ-Fe2O3/SiO2-Mg(OH)2@BC adhered to the pseudo-second-order kinetic model and the Freundlich isotherm model, primarily involving multilayer chemical adsorption. The application of this composite material in complex aquatic environments in antimony mining areas demonstrated promising practical results, as well as excellent regeneration performance. This study provides technical and theoretical support for the treatment of complex heavy metal wastewater in antimony mining areas and lays a foundation for the development of novel carbon-magnetic modified nanocomposite adsorbents.
Collapse
Affiliation(s)
- Songyun Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Bozhi Ren
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Shuangchan Cheng
- Xiangtan Middle Ring Water Business Limited Corporation, Xiangtan, Hunan 411201, China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Renjian Deng
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Guocheng Zhu
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
3
|
Shi Z, Zhu A, Chen F, Cai Y, Deng L. Synthesis of Amorphous MnFe@SBA Composites for Efficient Adsorptive Removal of Pb(Ⅱ) and Sb(V) from Aqueous Solution. Molecules 2025; 30:679. [PMID: 39942786 PMCID: PMC11820195 DOI: 10.3390/molecules30030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The extensive release of water contaminated with lead (Pb(II)) and antimony (Sb(V)) constitutes a serious threat to the human living environment and public health, necessitating immediate attention. In this study, a novel MnFe@SBA composite was synthesized using the hydrothermal method through the in situ growth of MnFe2O4 on SBA-15. The MnFe@SBA exhibits an amorphous structure with a high specific surface area of 405.9 m2/g and pore sizes ranging from 2 to 10 nm. Adsorption experiments demonstrated that MnFe@SBA removed over 99% of Pb(II) and 80% of Sb(V) within 120 min at initial concentrations of 10 mg/L, whereas both MnFe2O4 and SBA-15 exhibited poor adsorption capacities. Additionally, the MnFe@SBA displayed excellent tolerance towards coexisting cations, including Na+, K+, Mg2+, Ca2+, Zn2+, Ni2+, and Cd2+, as well as anions such as Cl-, NO3-, CO32-, and PO43-. The adsorption behavior of Pb(II) onto MnFe@SBA was satisfactorily described by the pseudo-second-order kinetic model and the Freundlich isotherm, while the adsorption of Sb(V) was well-fitted by the pseudo-second-order kinetic model and the Langmuir isotherm. At 318 K, the maximum adsorption capacities of MnFe@SBA for Pb(II) and Sb(V) were determined to be 329.86 mg/g and 260.40 mg/g, respectively. Mechanistic studies indicated that the adsorption of Pb(II) and Sb(V) onto MnFe@SBA involved two primary steps: electrostatic attraction and complexation. In conclusion, the MnFe@SBA is anticipated to serve as an ideal candidate for efficient removal of Pb(II) and Sb(V) from contaminated water.
Collapse
Affiliation(s)
| | | | | | - Yishu Cai
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; (Z.S.); (A.Z.); (F.C.)
| | - Lin Deng
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, China; (Z.S.); (A.Z.); (F.C.)
| |
Collapse
|
4
|
Zeng H, Zeng Y, Xu H, Sun S, Zhang J, Li D. Sb(III) Removal by Granular Adsorbent Synthesized with Iron-Containing Water Treatment Residuals and Chitosan. Polymers (Basel) 2024; 16:3214. [PMID: 39599305 PMCID: PMC11598717 DOI: 10.3390/polym16223214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, chitosan and iron-containing water treatment residues were used to prepare a chitosan/Fe-sludge particle adsorbent (CHFS) via the embedding method for Sb(III) removal. Various technologies were applied to characterize the CHFS, and batch experiments were used to investigate its adsorption properties. The results show that CHFS adsorbents are amorphous and have a specific surface area (119.95 m2/g), both beneficial for adsorption. pH and ionic strength have no impact on the adsorption. Sb(III) adsorption on CHFS occurs spontaneously and endothermically. Sb(III) adsorption by CHFS matches the pseudo-second-order kinetic model and the Langmuir model better, with a maximum adsorption capacity of 24.38 mg/g. The primary adsorption mechanism for Sb(III) is the inner sphere complexation between the Sb and Fe-O bond, while other adsorption mechanisms include chelation, pore filling, and hydrogen bonding. This study offers a reference for antimony removal and resource utilization of iron sludge.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - He Xu
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
6
|
Wang Y, Xu L, Li J, Ren Z, Liu W, Ai Y, Yang K, Qu J, Zhang B, Zhang Y. Synthesis of magnetic chitosan-composite biochar and its removal of copper ions (Cu 2+) and methylene blue (MB) dye from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59866-59881. [PMID: 39358659 DOI: 10.1007/s11356-024-35145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
This study presents the synthesis and evaluation of a magnetic chitosan-modified biochar (M-BC-CS) composite, developed from waste maize straw, for the efficient removal of copper ions (Cu2+) and methylene blue (MB) dye from aqueous solutions. The composite was characterized using advanced techniques such as SEM, BET, FTIR, XPS, and XRD, confirming its enhanced surface area, porosity, and magnetic properties. The study is aimed at investigating the optimal conditions for adsorption of Cu2+ and MB by M-BC-CS through analysis of the influence of diverse adsorbent dosages, pH levels, reaction times, and initial solution concentrations. The findings demonstrated that the equilibrium duration for the adsorption of Cu2+ and MB by M-BC-CS was 60 min, resulting in corresponding equilibrium adsorption quantities of 54.42 mg/g and 67.23 mg/g, respectively. To elucidate the adsorption mechanism, the present investigation applied the pseudo-second-order kinetic model and the Langmuir isotherm. The outcomes suggested that the adsorption process is attributable to single molecular layer chemisorption. XPS and FTIR analysis determined that ion exchange and electrostatic interactions are the predominant mechanisms responsible for the simultaneous adsorption of Cu2+ and MB, and a competitive relationship exists between these mechanisms. In addition, M-BC-CS exhibited exceptional magnetic separation performance, enabling effortless and effective separation when exposed to an external magnetic field. Furthermore, the results demonstrated that M-BC-CS has good reusability and high adsorption capacity also in real wastewater, thus emphasizing its potential as a promising adsorbent for the elimination of Cu2+ and MB from aqueous solutions.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zheyi Ren
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kaixiang Yang
- Qingdao Municipal Engineering Design & Research Institute Co., Ltd, Qingdao, 266000, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
7
|
Mo H, Shan H, Xu Y, Liao H, Peng S. Advancing Antimony(III) Adsorption: Impact of Varied Manganese Oxide Modifications on Iron-Graphene Oxide-Chitosan Composites. Molecules 2024; 29:4021. [PMID: 39274869 PMCID: PMC11397251 DOI: 10.3390/molecules29174021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Antimony (Sb) is one of the most concerning toxic metals globally, making the study of methods for efficiently removing Sb(III) from water increasingly urgent. This study uses graphene oxide and chitosan as the matrix (GOCS), modifying them with FeCl2 and four MnOx to form iron-manganese oxide (FM/GC) at a Fe/Mn molar ratio of 4:1. FM/GC quaternary composite microspheres are prepared, showing that FM/GC obtained from different MnOx exhibits significant differences in the ability to remove Sb(III) from neutral solutions. The order of Sb(III) removal effectiveness is MnSO4 > KMnO4 > MnCl2 > MnO2. The composite microspheres obtained by modifying GOCS with FeCl2 and MnSO4 are selected for further batch experiments and characterization tests to analyze the factors and mechanisms influencing Sb(III) removal. The results show that the adsorption capacity of Sb(III) decreases with increasing pH and solid-liquid ratio, and gradually increases with the initial concentration and reaction time. The Langmuir model fitting indicates that the maximum adsorption capacity of Sb(III) is 178.89 mg/g. The adsorption mechanism involves the oxidation of the Mn-O group, which converts Sb(III) in water into Sb(V). This is followed by ligand exchange and complex formation with O-H in FeO(OH) groups, and further interactions with C-OH, C-O, O-H, and other functional groups in GOCS.
Collapse
Affiliation(s)
- Huinan Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Huimei Shan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yuqiao Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Haimin Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Collaborative Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Sanxi Peng
- College of Earth Science, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
8
|
Ran M, Wu J, Jiao Y, Li J. Efficient removal of Sb(III) from wastewater using selenium nanoparticles synthesized by Psidium guajava plant extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43781-43797. [PMID: 38907816 DOI: 10.1007/s11356-024-34007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Antimony (Sb) pollution in aquatic ecosystems has emerged as a critical environmental issue on a global scale, emphasizing the urgent need for cost-effective and user-friendly technologies to remove Sb compounds from water sources. In this study, a novel adsorbent, selenium nanoparticles (SeNPs), was synthesized using the aqueous extract of Psidium guajava L. leaves (AEP) for the purpose of eliminating Sb(III) from aqueous solutions. The biosynthesized SeNPs was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray fluorescence spectrometer (XRF), Fourier Transform-Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis techniques. Additionally, the removal efficiency of the SeNPs for Sb(III) was systematic investigated under the effects of SeNPs dose, temperature, pH and re-usability. The results of this study showed that the adsorption data fitted well into pseudo-second order model, while the Sips modeling demonstrated a high adsorption capacity (62.7 mg/g) of SeNPs for Sb(III) ions at 303.15 K from aqueous solution. The exothermic enthalpy change of - 22.59 kJ/mol and negative Gibbs free energy change assured the viability of the adsorption process under the considered temperature conditions. Surface functional groups on SeNPs like carboxyl, amide, hydroxyl, carbonyl, and methylene significantly facilitate the adsorption processes. Furthermore, the removal efficiencies of Sb in the two actual Sb mine wastewater samples were remarkably high, achieving nearly to 100% with 1.5 g/L SeNPs within 48 h. This outcome underscores the potential of SeNPs as a highly promising solution for efficiently remediating Sb from aquatic environments, owing to their cost-effectiveness, ease of regeneration, and rapid uptake capabilities.
Collapse
Affiliation(s)
- Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
9
|
Muhanmaitijiang N, Hu X, Shan D, Chen H. Removal of Pb pollution using alginate-coupled magnetic sludge biochar: Solidification and stabilization behavior and electron promotion mechanisms. Int J Biol Macromol 2024; 272:132725. [PMID: 38821303 DOI: 10.1016/j.ijbiomac.2024.132725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Environmental and human health problems caused by Pb pollution have attracted much attention, and solidification and stabilization are effective means for its remediation. Improving the ability of biochar to remediate heavy metals through modification is the focus of current biochar research. This study used calcium-alginate gel (GB) and Fe3+ (magnetic) to encapsulate and improve sludge biochar (SB), and explored the adsorption behavior and passivation mechanism of Pb2+ on it from outside to inside. The magnetic-biochar (MB) in magnetic-biochar-gel microspheres (MBGB) showed a homogeneous dispersion and part of the Fe ion was detached from the MB into the three-dimensional pores of the gel. The results of kinetic, isothermal and pH adsorption experiments showed that the MBGB has 108.4 % and 200 % higher Pb2+ adsorption capacity and rate than SB and can be applied to pH 3-9. The adsorption of Pb2+ by MBGB is a multilayer adsorption with both physical and chemical mechanisms. Mineralogical and electrochemical results demonstrate that the cross-linking of the gel with magnetic-biochar (MB) can provide a directional diffusion channel for Pb2+ from the outside to the inside. The electron transfer rate of MBGB was significantly higher than that of SB (222.2 %) after the reaction. The dissolved cations and electrons on the MB guide Pb2+ from the MBGB surface to the internal MB quickly via accelerating the electron transfer and migration rate between Pb2+ and MB. Subsequently, the abundance of PO43- on the MB ensures stable mineral precipitation (Pyromorphite). Moreover, four-step extraction analysis confirmed that most of Pb2+ in MBGB was stable (36.2 % acid-soluble and 47.6 % non-bioavailable). Meanwhile, the Pb adsorption efficiency of MBGB was still >93.0 % after three cycles of adsorption-desorption. Excellent reuse performance and stability guarantee the environmental security of MBGB. The results of the study provide theoretical support for the efficient treatment of Pb2+ polluted water assisted by gel materials.
Collapse
Affiliation(s)
- Nazhafati Muhanmaitijiang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China..
| | - Haoming Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China..
| |
Collapse
|