1
|
Egbert M, Gagnon JS, Pérez-Mercader J. From chemical soup to computing circuit: transforming a contiguous chemical medium into a logic gate network by modulating its external conditions. J R Soc Interface 2019; 16:20190190. [PMID: 31506047 DOI: 10.1098/rsif.2019.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It has been shown that it is possible to transform a well-stirred chemical medium into a logic gate simply by varying the chemistry's external conditions (feed rates, lighting conditions, etc.). We extend this work, showing that the same method can be generalized to spatially extended systems. We vary the external conditions of a well-known chemical medium (a cubic autocatalytic reaction-diffusion model), so that different regions of the simulated chemistry are operating under particular conditions at particular times. In so doing, we are able to transform the initially uniform chemistry, not just into a single logic gate, but into a functionally integrated network of diverse logic gates that operate as a basic computational circuit known as a full-adder.
Collapse
Affiliation(s)
- Matthew Egbert
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.,University of Auckland, Auckland, New Zealand
| | - Jean-Sébastien Gagnon
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.,Physics Department, Norwich University, Northfield, VT, USA
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.,Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
2
|
Abstract
A substrate does not have to be solid to compute. It is possible to make a computer purely from a liquid. I demonstrate this using a variety of experimental prototypes where a liquid carries signals, actuates mechanical computing devices and hosts chemical reactions. We show hydraulic mathematical machines that compute functions based on mass transfer analogies. I discuss several prototypes of computing devices that employ fluid flows and jets. They are fluid mappers, where the fluid flow explores a geometrically constrained space to find an optimal way around, e.g. the shortest path in a maze, and fluid logic devices where fluid jet streams interact at the junctions of inlets and results of the computation are represented by fluid jets at selected outlets. Fluid mappers and fluidic logic devices compute continuously valued functions albeit discretized. There is also an opportunity to do discrete operation directly by representing information by droplets and liquid marbles (droplets coated by hydrophobic powder). There, computation is implemented at the sites, in time and space, where droplets collide one with another. The liquid computers mentioned above use liquid as signal carrier or actuator: the exact nature of the liquid is not that important. What is inside the liquid becomes crucial when reaction-diffusion liquid-phase computing devices come into play: there, the liquid hosts families of chemical species that interact with each other in a massive-parallel fashion. I shall illustrate a range of computational tasks, including computational geometry, implementable by excitation wave fronts in nonlinear active chemical medium. The overview will enable scientists and engineers to understand how vast is the variety of liquid computers and will inspire them to design their own experimental laboratory prototypes. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, University of the West of England, Bristol, UK
| |
Collapse
|
3
|
Abstract
We propose that fungi Basidiomycetes can be used as computing devices: information is represented by spikes of electrical activity, a computation is implemented in a mycelium network and an interface is realized via fruit bodies. In a series of scoping experiments, we demonstrate that electrical activity recorded on fruits might act as a reliable indicator of the fungi's response to thermal and chemical stimulation. A stimulation of a fruit is reflected in changes of electrical activity of other fruits of a cluster, i.e. there is distant information transfer between fungal fruit bodies. In an automaton model of a fungal computer, we show how to implement computation with fungi and demonstrate that a structure of logical functions computed is determined by mycelium geometry.
Collapse
|
4
|
Adamatzky A, Phillips N, Weerasekera R, Tsompanas MA, Sirakoulis GC. Street map analysis with excitable chemical medium. Phys Rev E 2018; 98:012306. [PMID: 30110822 DOI: 10.1103/physreve.98.012306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Belousov-Zhabotinsky (BZ) thin layer solution is a fruitful substrate for designing unconventional computing devices. A range of logical circuits, wet electronic devices, and neuromorphic prototypes have been constructed. Information processing in BZ computing devices is based on interaction of oxidation (excitation) wave fronts. Dynamics of the wave fronts propagation is programed by geometrical constraints and interaction of colliding wave fronts is tuned by illumination. We apply the principles of BZ computing to explore a geometry of street networks. We use two-variable Oregonator equations, the most widely accepted and verified in laboratory experiments BZ models, to study propagation of excitation wave fronts for a range of excitability parameters, with gradual transition from excitable to subexcitable to nonexcitable. We demonstrate a pruning strategy adopted by the medium with decreasing excitability when wider and ballistically appropriate streets are selected. We explain mechanics of streets selection and pruning. The results of the paper will be used in future studies of studying dynamics of cities and characterizing geometry of street networks.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | - Neil Phillips
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | - Roshan Weerasekera
- Unconventional Computing Laboratory, University of the West of England, Bristol, United Kingdom
| | | | - Georgios Ch Sirakoulis
- Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
5
|
Adamatzky A. Computing in Verotoxin. Chemphyschem 2017; 18:1822-1830. [DOI: 10.1002/cphc.201700477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/23/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Centre; University of the West of England; Bristol BS16 1QY UK
| |
Collapse
|
6
|
Adamatzky A. On Emulation of Flueric Devices in Excitable Chemical Medium. PLoS One 2016; 11:e0168267. [PMID: 27997561 PMCID: PMC5173363 DOI: 10.1371/journal.pone.0168267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Flueric devices are fluidic devices without moving parts. Fluidic devices use fluid as a medium for information transfer and computation. A Belousov-Zhabotinsky (BZ) medium is a thin-layer spatially extended excitable chemical medium which exhibits travelling excitation wave-fronts. The excitation wave-fronts transfer information. Flueric devices compute via jets interaction. BZ devices compute via excitation wave-fronts interaction. In numerical model of BZ medium we show that functions of key flueric devices are implemented in the excitable chemical system: signal generator, and, xor, not and nor Boolean gates, delay elements, diodes and sensors. Flueric devices have been widely used in industry since late 1960s and are still employed in automotive and aircraft technologies. Implementation of analog of the flueric devices in the excitable chemical systems opens doors to further applications of excitation wave-based unconventional computing in soft robotics, embedded organic electronics and living technologies.
Collapse
Affiliation(s)
- Andrew Adamatzky
- University of the West of England, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Adamatzky A. Binary full adder, made of fusion gates, in a subexcitable Belousov-Zhabotinsky system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032811. [PMID: 26465532 DOI: 10.1103/physreve.92.032811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Indexed: 06/05/2023]
Abstract
In an excitable thin-layer Belousov-Zhabotinsky (BZ) medium a localized perturbation leads to the formation of omnidirectional target or spiral waves of excitation. A subexcitable BZ medium responds to asymmetric local perturbation by producing traveling localized excitation wave-fragments, distant relatives of dissipative solitons. The size and life span of an excitation wave-fragment depend on the illumination level of the medium. Under the right conditions the wave-fragments conserve their shape and velocity vectors for extended time periods. I interpret the wave-fragments as values of Boolean variables. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. States of the logic variables, represented by the wave-fragments, are changed in the result of the collision between the wave-fragments. Thus, a logical gate is implemented. Several theoretical designs and experimental laboratory implementations of Boolean logic gates have been proposed in the past but little has been done cascading the gates into binary arithmetical circuits. I propose a unique design of a binary one-bit full adder based on a fusion gate. A fusion gate is a two-input three-output logical device which calculates the conjunction of the input variables and the conjunction of one input variable with the negation of another input variable. The gate is made of three channels: two channels cross each other at an angle, a third channel starts at the junction. The channels contain a BZ medium. When two excitation wave-fragments, traveling towards each other along input channels, collide at the junction they merge into a single wave-front traveling along the third channel. If there is just one wave-front in the input channel, the front continues its propagation undisturbed. I make a one-bit full adder by cascading two fusion gates. I show how to cascade the adder blocks into a many-bit full adder. I evaluate the feasibility of my designs by simulating the evolution of excitation in the gates and adders using the numerical integration of Oregonator equations.
Collapse
Affiliation(s)
- Andrew Adamatzky
- Unconventional Computing Centre, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
8
|
Jones J, Whiting JG, Adamatzky A. Quantitative transformation for implementation of adder circuits in physical systems. Biosystems 2015; 134:16-23. [DOI: 10.1016/j.biosystems.2015.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 01/03/2023]
|
9
|
Adamatzky A. Slime mould processors, logic gates and sensors. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:rsta.2014.0216. [PMID: 26078344 DOI: 10.1098/rsta.2014.0216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
A heterotic, or hybrid, computation implies that two or more substrates of different physical nature are merged into a single device with indistinguishable parts. These hybrid devices then undertake coherent acts on programmable and sensible processing of information. We study the potential of heterotic computers using slime mould acting under the guidance of chemical, mechanical and optical stimuli. Plasmodium of acellular slime mould Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioural morphological patterns in response to changing environmental conditions. Given data represented by chemical or physical stimuli, we can employ and modify the behaviour of the slime mould to make it solve a range of computing and sensing tasks. We overview results of laboratory experimental studies on prototyping of the slime mould morphological processors for approximation of Voronoi diagrams, planar shapes and solving mazes, and discuss logic gates implemented via collision of active growing zones and tactile responses of P. polycephalum. We also overview a range of electronic components--memristor, chemical, tactile and colour sensors-made of the slime mould.
Collapse
Affiliation(s)
- A Adamatzky
- Unconventional Computing Centre, University of the West of England, Bristol, UK
| |
Collapse
|
10
|
Horvath V, Kutner DJ, Chavis III JT, Epstein IR. Pulse-coupled BZ oscillators with unequal coupling strengths. Phys Chem Chem Phys 2015; 17:4664-76. [DOI: 10.1039/c4cp05416d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A host of asymptotically stable, temporally periodic patterns are found when chemical oscillators are pulse coupled,e.g., the 1 : 2 and 1 : D–N type patterns shown here.
Collapse
|
11
|
Mustard J, Levin M. Bioelectrical Mechanisms for Programming Growth and Form: Taming Physiological Networks for Soft Body Robotics. Soft Robot 2014. [DOI: 10.1089/soro.2014.0011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jessica Mustard
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Department of Biology and Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts
| |
Collapse
|
12
|
Abstract
Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.
Collapse
Affiliation(s)
- Olga Kuksenok
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Debabrata Deb
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Pratyush Dayal
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Present address: Department of Chemical Engineering, Indian Institute of Technology, Gandhinagar 382424, India
| | - Anna C. Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
13
|
Dayal P, Kuksenok O, Balazs AC. Directing the Behavior of Active, Self-Oscillating Gels with Light. Macromolecules 2014. [DOI: 10.1021/ma402430b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pratyush Dayal
- Chemical
Engineering Department, Indian Institute of Technology, Gandhinagar, India
| | - Olga Kuksenok
- Chemical
Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anna C. Balazs
- Chemical
Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
14
|
Abstract
The plasmodium of the acellular slime mold Physarum polycephalum is a gigantic single cell visible to the unaided eye. The cell shows a rich spectrum of behavioral patterns in response to environmental conditions. In a series of simple experiments we demonstrate how to make computing, sensing, and actuating devices from the slime mold. We show how to program living slime mold machines by configurations of repelling and attracting gradients and demonstrate the workability of the living machines on tasks of computational geometry, logic, and arithmetic.
Collapse
|
15
|
Sun MZ, Zhao X. Multi-bit binary decoder based on Belousov-Zhabotinsky reaction. J Chem Phys 2013; 138:114106. [DOI: 10.1063/1.4794995] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ming-Zhu Sun
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| |
Collapse
|
16
|
Kuksenok O, Dayal P, Bhattacharya A, Yashin VV, Deb D, Chen IC, Van Vliet KJ, Balazs AC. Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chem Soc Rev 2013; 42:7257-77. [DOI: 10.1039/c3cs35497k] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Abstract
Using computational modeling, we show that self-oscillating Belousov-Zhabotinsky (BZ) gels can both emit and sense a chemical signal and thus drive neighboring gel pieces to spontaneously self-aggregate, so that the system exhibits autochemotaxis. To the best of our knowledge, this is the closest system to the ultimate self-recombining material, which can be divided into separated parts and the parts move autonomously to assemble into a structure resembling the original, uncut sample. We also show that the gels' coordinated motion can be controlled by light, allowing us to achieve selective self-aggregation and control over the shape of the gel aggregates. By exposing the BZ gels to specific patterns of light and dark, we design a BZ gel "train" that leads the movement of its "cargo." Our findings pave the way for creating reconfigurable materials from self-propelled elements, which autonomously communicate with neighboring units and thereby actively participate in constructing the final structure.
Collapse
|
18
|
Stevens WM, Adamatzky A, Jahan I, Costello BDL. Time-dependent wave selection for information processing in excitable media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066129. [PMID: 23005184 DOI: 10.1103/physreve.85.066129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/24/2012] [Indexed: 06/01/2023]
Abstract
We demonstrate an improved technique for implementing logic circuits in light-sensitive chemical excitable media. The technique makes use of the constant-speed propagation of waves along defined channels in an excitable medium based on the Belousov-Zhabotinsky reaction, along with the mutual annihilation of colliding waves. What distinguishes this work from previous work in this area is that regions where channels meet at a junction can periodically alternate between permitting the propagation of waves and blocking them. These valvelike areas are used to select waves based on the length of time that it takes waves to propagate from one valve to another. In an experimental implementation, the channels that make up the circuit layout are projected by a digital projector connected to a computer. Excitable channels are projected as dark areas and unexcitable regions as light areas. Valves alternate between dark and light: Every valve has the same period and phase, with a 50% duty cycle. This scheme can be used to make logic gates based on combinations of or and and-not operations, with few geometrical constraints. Because there are few geometrical constraints, compact circuits can be implemented. Experimental results from an implementation of a four-bit input, two-bit output integer square root circuit are given.
Collapse
Affiliation(s)
- William M Stevens
- Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Zhang GM, Wong I, Chou MT, Zhao X. Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction. J Chem Phys 2012; 136:164108. [DOI: 10.1063/1.3702846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guo-Mao Zhang
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| | - Ieong Wong
- Mechanical and Aerospace Engineering Department, University of California Los Angeles, Los Angeles, California 90095-1597, USA
| | - Meng-Ta Chou
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095-1594, USA
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Holley J, Jahan I, Costello BDL, Bull L, Adamatzky A. Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:056110. [PMID: 22181476 DOI: 10.1103/physreve.84.056110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/26/2011] [Indexed: 05/31/2023]
Abstract
Excitation waves on a subexcitable Belousov-Zhabotinsky (BZ) substrate can be manipulated by chemical variations in the substrate and by interactions with other waves. Symbolic assignment and interpretation of wave dynamics can be used to perform logical and arithmetic computations. We present chemical analogs of elementary logic and arithmetic circuits created entirely from interconnected arrangements of individual BZ encapsulated cell-like disk. Interdisk wave migration is confined in carefully positioned connecting pores. This connection limits wave expansion and unifies the input-output characteristic of the disks. Circuit designs derived from numeric simulations are optically encoded onto a homogeneous photosensitive BZ substrate.
Collapse
Affiliation(s)
- Julian Holley
- Faculty of Environment and Technology, University of the West of England, Bristol, England.
| | | | | | | | | |
Collapse
|