1
|
Liu JH, Gates WP, Yang HM, Kurniawan A, Zhou CH. Tunable Colloidal Properties of Lauramidopropyl Betaine and Li Co-modified Montmorillonite in Ethanol/Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5378-5390. [PMID: 38421604 DOI: 10.1021/acs.langmuir.3c03892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Montmorillonite (Mt) is a hydrophilic clay mineral with a generally high cationic exchange capacity and a remarkable swellability in water. Yet the application of Mt in cosmetics, paints, polymer nanocomposites, drug delivery systems, and tissue engineering are limited due to its unfavorable swelling and dispersion in alcohol/water mixtures. Improving the swellability and dispersibility of Mt in mixtures of ethanol and water remains challenging. Here, we showed that the swellability and dispersibility of Mt in ethanol/water could be significantly enhanced when lithium-Mt (Li-Mt) was intercalated by zwitterionic surfactant lauramidopropyl betaine (LPB). The binding mechanism of the LPB intercalate to Li-Mt originated from a combination of van der Waals forces, ion-dipole interaction, and electrostatic attraction. Due to the synergistic effect of Li+ and LPB, the comodified Mt (LPB-Li-Mt) exhibited excellent swellability, dispersibility, and rheological properties. The structure, morphology, zeta potential, dispersibility, and gel-forming performance of LPB-Li-Mt can be modulated by the concentrations of ethanol in ethanol/water mixtures. When the ethanol concentration increased to 75% v/v ethanol solution, the free swelling of LPB-Li-Mt remained above 80%. The results from X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoemission spectrometry, and small-angle X-ray scattering confirmed the full exfoliation of LPB-Li-Mt at 75% (v/v) ethanol solution. The formation of a stable colloidal LPB-Li-Mt dispersion in a mixture of ethanol/water might be derived from the association between water molecules and the Li+, the hydrophobic interaction, and the ion-dipole of ethanol with the LPB molecules. The findings provide a guide for improving dispersion and swelling of Mt and modified ones in water-miscible organic solvents.
Collapse
Affiliation(s)
- Jia Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Will P Gates
- Institute for Frontier Materials, Deakin University Melbourne-Burwood, Burwood 3125, Victoria, Australia
| | - Hui Min Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, China
| | - Alfin Kurniawan
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
- Anhui International Exchange and Cooperation Base, Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
2
|
Rana R, Ali SM, Maity DK. Structure and dynamics of the Li + ion in water, methanol and acetonitrile solvents: ab initio molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:31382-31395. [PMID: 37961866 DOI: 10.1039/d3cp04403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Fundamental understanding of the structure and dynamics of the Li+ ion in solution is of utmost importance in different fields of science and technology, especially in the field of ion batteries. In view of this, ab initio molecular dynamics (AIMD) simulations of the LiCl salt in water, methanol and acetonitrile were performed to elucidate structural parameters such as radial distribution function and coordination number, and dynamical properties like diffusion coefficient, limiting ion conductivity and hydrogen bond correlation function. In the present AIMD simulation, one LiCl in water is equivalent to 0.8 M, which is close to the concentration of the lithium salt used in the Li-ion battery. The first sphere of coordination number of the Li+ ion was reaffirmed to be 4. The radial distribution function for different pairs of atoms is seen to be in good agreement with the experimental results. The calculated potential of mean force indicates the stronger interaction of the Li+ ion with methanol over water followed by acetonitrile. The dynamical parameters convey quite high diffusion and limiting ionic conductivity of the Li+ ion in acetonitrile compared to that in water and methanol which has been attributed to the transport of the Li-Cl ion pair in a non-dissociated form in acetonitrile. The AIMD results were found to be in accordance with the experimental findings, i.e. the limiting ion conductivity was found to follow the order acetonitrile > methanol > water. This study shows the importance of atomistic level simulations in evaluating the structural and dynamical parameters and in implementing the results for predicting and synthesizing better next generation solvents for lithium ion batteries (LIBs).
Collapse
Affiliation(s)
- Reman Rana
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Sk Musharaf Ali
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Dilip K Maity
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
3
|
Molecular dynamics simulations of LiCl ion pairs in high temperature aqueous solutions by deep learning potential. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Alkali metal chlorides in DMSO–methanol binary mixtures: insights into the structural properties through molecular dynamics simulations. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Nair AS, Bagchi B. Rigid Cations Induce Enhancement of Microheterogeneity and Exhibit Anomalous Ion Diffusion in Water-Ethanol Mixtures. J Phys Chem B 2021; 125:12274-12291. [PMID: 34726411 DOI: 10.1021/acs.jpcb.1c07698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the amphiphilic nature of ethanol in the aqueous solution, ions cause an interesting microheterogeneity where the water molecules and the hydroxy groups of ethanol preferentially solvate the ions, while the ethyl groups tend to occupy the intervening space. Using computer simulations, we study the dynamics of rigid monovalent cations (Li+, Na+, K+, and Cs+) in aqueous ethanol solutions with chloride as the counterion. We vary both the size of the ions and the composition of the mixture to explore size- and composition-dependent ion diffusion. The relative stability of enhanced microheterogeneous configurations makes ion diffusion slower than what would be surmised by using the bulk properties of the mixture, using the Stokes-Einstein relation. We study the structure through partial radial distribution functions and the stability through coordination number fluctuations. The ion diffusion coefficient exhibits sharp re-entrant behavior when plotted against viscosity varied by composition. Our studies reveal multiple anomalous features of ion motion in this mixture. We formulate a mode-coupling theory (MCT) that takes into account the interaction between different dynamical components; MCT can incorporate the effects of heterogeneous dynamics and nonlinearity in composition dependence that arise from the feedback between mutually dependent ion-solvent dynamics.
Collapse
Affiliation(s)
- Anjali S Nair
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
|
7
|
Prasetyo N, Hünenberger PH, Hofer TS. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li + Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6443-6459. [PMID: 30284829 DOI: 10.1021/acs.jctc.8b00729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δs GM+,wat◦ of the Li+ ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χwat◦ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol-1, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li+ are also compared to those for Na+ and K+ from a previous study in terms of relative hydration free energies ΔΔs GM+,wat◦ and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔs GM+,wat• and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li+ hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.
Collapse
Affiliation(s)
- Niko Prasetyo
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria.,Austria-Indonesia Centre (AIC) for Computational Chemistry , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie , ETH Zürich, ETH-Hönggerberg , HCI Building , CH-8093 Zürich , Switzerland
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
8
|
The Radiofrequency NMR Spectra of Lithium Salts in Water; Reevaluation of Nuclear Magnetic Moments for 6Li and 7Li Nuclei. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4010009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Manin N, da Silva MC, Zdravkovic I, Eliseeva O, Dyshin A, Yaşar O, Salahub DR, Kolker AM, Kiselev MG, Noskov SY. LiCl solvation in N-methyl-acetamide (NMA) as a model for understanding Li(+) binding to an amide plane. Phys Chem Chem Phys 2016; 18:4191-200. [PMID: 26784370 DOI: 10.1039/c5cp04847h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The thermodynamics of ion solvation in non-aqueous solvents remains of great significance for understanding cellular transport and ion homeostasis for the design of novel ion-selective materials and applications in molecular pharmacology. Molecular simulations play pivotal roles in connecting experimental measurements to the microscopic structures of liquids. One of the most useful and versatile mimetic systems for understanding biological ion transport is N-methyl-acetamide (NMA). A plethora of theoretical studies for ion solvation in NMA have appeared recently, but further progress is limited by two factors. One is an apparent lack of experimental data on solubility and thermodynamics of solvation for a broad panel of 1 : 1 salts over an appropriate temperature and concentration range. The second concern is more substantial and has to do with the limitations hardwired in the additive (fixed charge) approximations used for most of the existing force-fields. In this submission, we report on the experimental evaluation of LiCl solvation in NMA over a broad range of concentrations and temperatures and compare the results with those of MD simulations with several additive and one polarizable force-field (Drude). By comparing our simulations and experimental results to density functional theory computations, we discuss the limiting factors in existing potential functions. To evaluate the possible implications of explicit and implicit polarizability treatments on ion permeation across biological channels, we performed potential of mean force (PMF) computations for Li(+) transport through a model narrow ion channel with additive and polarizable force-fields.
Collapse
Affiliation(s)
- Nikolai Manin
- G.A. Krestov Institute for Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str, 1, Ivanovo, 153045, Russia.
| | - Mauricio C da Silva
- Centre for Molecular Simulation, BI-447, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada. and Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Igor Zdravkovic
- Centre for Molecular Simulation, BI-447, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada. and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada
| | - Olga Eliseeva
- G.A. Krestov Institute for Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str, 1, Ivanovo, 153045, Russia.
| | - Alexey Dyshin
- G.A. Krestov Institute for Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str, 1, Ivanovo, 153045, Russia.
| | - Orhan Yaşar
- Centre for Molecular Simulation, BI-447, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada. and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada
| | - Dennis R Salahub
- Centre for Molecular Simulation, BI-447, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada. and Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Arkadiy M Kolker
- G.A. Krestov Institute for Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str, 1, Ivanovo, 153045, Russia.
| | - Michael G Kiselev
- G.A. Krestov Institute for Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str, 1, Ivanovo, 153045, Russia.
| | - Sergei Yu Noskov
- Centre for Molecular Simulation, BI-447, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada. and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T3A 2T3, Canada
| |
Collapse
|
10
|
Migliorati V, D’Angelo P. Unraveling the perturbation induced by Zn2+ and Hg2+ ions on the hydrogen bond patterns of liquid methanol. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Zeng Y, Wang C, Xu Y, Xu W, Ju S. Structural Properties and Dynamics of Thiophene in Sub/Supercritical Carbon Dioxide from Car–Parrinello Molecular Dynamics Simulations. J Phys Chem B 2015; 119:8573-82. [DOI: 10.1021/acs.jpcb.5b01430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yongping Zeng
- College
of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Chunfeng Wang
- College
of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yueyang Xu
- Guodian Science and Technology Research Institute, Nanjing, 210031, China
| | - WenLin Xu
- College
of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Shengui Ju
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University), Nanjing, 211816, China
| |
Collapse
|
12
|
Munaò G, Urbic T. Structure and thermodynamics of core-softened models for alcohols. J Chem Phys 2015; 142:214508. [DOI: 10.1063/1.4922164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gianmarco Munaò
- Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Tomaz Urbic
- Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Daub CD, Åstrand PO, Bresme F. Lithium Ion–Water Clusters in Strong Electric Fields: A Quantum Chemical Study. J Phys Chem A 2015; 119:4983-92. [DOI: 10.1021/acs.jpca.5b01822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher D. Daub
- Department
of Chemistry, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
| | - Per-Olof Åstrand
- Department
of Chemistry, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
| | - Fernando Bresme
- Department
of Chemistry, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Department
of Chemistry, Imperial College London SW7 2AZ, London, United Kingdom
| |
Collapse
|
14
|
Zhang N, Shen Z, Chen C, He G, Hao C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.12.047] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Pezeshki S, Lin H. Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: On-the-fly partial charge transfer between QM and MM subsystems. J Comput Chem 2014; 35:1778-88. [DOI: 10.1002/jcc.23685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/19/2014] [Accepted: 06/30/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Soroosh Pezeshki
- Chemistry Department; CB 194, University of Colorado Denver; PO Box 173364 Denver Colorado 80217
| | - Hai Lin
- Chemistry Department; CB 194, University of Colorado Denver; PO Box 173364 Denver Colorado 80217
| |
Collapse
|