1
|
Rutkowski K, Melikova S, Rospenk M. Evidence of noncovalent interactions between sevoflurane and dimethyl ether. FTIR cryospectroscopic and ab initio studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Wang Y, Ming XX, Zhang CP. Fluorine-Containing Inhalation Anesthetics: Chemistry, Properties and Pharmacology. Curr Med Chem 2020; 27:5599-5652. [DOI: 10.2174/0929867326666191003155703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Studies on fluorinated inhalation anesthetics, including synthesis, physical chemistry and
pharmacology, have been summarized in this review. Retrospecting the history of inhalation anesthetics
revealed their increasing reliance on fluorine and ether structures. Halothane causes a rare but
severe immune-based hepatotoxicity, which was replaced by enflurane in the 1970s. Isoflurane replaced
enflurane in the 1980s, showing modest advantages (e.g. lower solubility, better metabolic
stability, and without convulsive predisposition). Desflurane and sevoflurane came into use in the
1990s, which are better anesthetics than isoflurane (less hepatotoxicity, lower solubility, and/or
markedly decreased pungency). However, they are still less than perfect. To gain more ideal inhalation
anesthetics, a large number of fluorinated halocarbons, polyfluorocycloalkanes, polyfluorocycloalkenes,
fluoroarenes, and polyfluorooxetanes, were prepared and their potency and toxicity were
evaluated. Although the pharmacology studies suggested that some of these agents produced anesthesia,
no further studies were continued on these compounds because they showed obvious lacking
as anesthetics. Moreover, the anesthetic activity cannot be simply predicted from the molecular
structures but has to be inferred from the experiments. Several regularities were found by experimental
studies: 1) the potency and toxicity of the saturated linear chain halogenated ether are enhanced
when its molecular weight is increased; 2) the margin of safety decreases and the recovery
time is prolonged when the boiling point of the candidate increases; and 3) compounds with an
asymmetric carbon terminal exhibit good anesthesia. Nevertheless, the development of new inhalation
anesthetics, better than desflurane and sevoflurane, is still challenging not only because of the
poor structure/activity relationship known so far but also due to synthetic issues.
Collapse
Affiliation(s)
- Yuzhong Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Xiao-Xia Ming
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
3
|
Melikova S, Rutkowski K, Rospenk M. IR cryospectroscopic manifestation of complex formation between methoxyflurane and dimethyl ether in liquid Xe. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Melikova SM, Rutkowski KS, Rospenk M. Noncovalent interactions between isoflurane and dimethyl ether. Spectroscopic evidence of trimer formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117363. [PMID: 31319270 DOI: 10.1016/j.saa.2019.117363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
The IR spectra of isoflurane + dimethyl ether mixtures dissolved in liquid Kr are registered at T ~118-160 K. The results obtained at a wide range of relative concentrations suggest the formation of complexes stabilized by non-covalent interactions of H-bond type. Large excess of DME and low temperature favor trimer formation stabilized by interactions between two DME moieties and both CH groups of isoflurane predominantly. Estimations based on ab initio calculation of spectroscopic and thermodynamic parameters confirm the experimental findings.
Collapse
Affiliation(s)
- S M Melikova
- Department of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russian Federation
| | - K S Rutkowski
- Department of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russian Federation.
| | - M Rospenk
- Faculty of Chemistry, University of Wroclaw, Joliot Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Melikova S, Rutkowski K, Rospenk M. Cryosolution infrared study of hydrogen bonded halothane acetylene complex. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Cieślik-Boczula K, Rospenk M. Interaction of anesthetic molecules with α-helix and polyproline II extended helix of long-chain poly-l-lysine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:436-442. [PMID: 28843877 DOI: 10.1016/j.saa.2017.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
The effect of halothane, enflurane, sevoflurane, and isoflurane molecules, as volatile anesthetics, on the α-helices and polyproline II extended helices (PPII) of long-chain poly-l-lysine (PLL) were studied using Fourier-transform infrared and vibrational circular dichroism spectroscopy. Uncharged and charged α-helices, as well as charged extended PPII helices, were subjected to anesthetic actions in solvents with different pD values or methanol to water ratios. A crucial factor responsible for hindering the anesthetic-PLL interactions is shown to be the ionization of amino groups of the PLL side chains. The α-helix to β-sheet transition was triggered only for the uncharged α-helical structures of PLL by the nonpolar anesthetics under study.
Collapse
Affiliation(s)
| | - Maria Rospenk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
7
|
Kuć M, Cieślik-Boczula K, Rospenk M. Anesthetic-dependent changes in the chain-melting phase transition of DPPG liposomes studied using near-infrared spectroscopy supported by PCA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 186:37-43. [PMID: 28605687 DOI: 10.1016/j.saa.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The effect of inhalation anesthetics (enflurane, isoflurane, sevoflurane or halothane) on the lipid chain-melting phase transition of negatively charged phospholipid membranes was studied using near-infrared (NIR) spectroscopy supported by Principal Component Analysis (PCA). NIR spectra of anesthetics-mixed dipalmitoylphosphatidylglycerol (DPPG) membranes were recorded in a range of the first overtone of the symmetric and antisymmetric stretching vibrations of CH2 groups of lipid aliphatic chains as a function of increasing temperature. Anesthetic-dependent changes in the trans to gauche conformers ratio of CH2 groups in the hydrocarbon lipid chains were characterized in detail and compared with the zwitterionic lipid membranes, which were built of dipalmitoylphosphatidylcholine (DPPC) molecules.
Collapse
Affiliation(s)
- Marta Kuć
- Faculty of Chemistry, University of Wroclaw, Joliot- Curie 14, 50-383 Wroclaw, Poland
| | | | - Maria Rospenk
- Faculty of Chemistry, University of Wroclaw, Joliot- Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
8
|
Melikova SM, Rutkowski KS, Rospenk M. FTIR cryospectroscopic and ab initio studies of desflurane-dimethyl ether H-bonded complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:163-168. [PMID: 28494378 DOI: 10.1016/j.saa.2017.04.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
The IR spectra of mixtures of desflurane and dimethyl ether are studied with the help of FTIR cryospectroscopy in liquefied Kr at T~118-158K. Comparative analysis of the experimental data and results of ab initio calculations show that either of the two C-H groups of desflurane is involved in heterodimer formation of comparable strengths. The blue frequency shift is found for stretching vibrations of those C-H donors which directly participate in H-bond formation. Additionally the complexes are stabilized by weaker contacts between hydrogen atoms of dimethyl ether and fluorine atoms of desflurane.
Collapse
Affiliation(s)
- S M Melikova
- Department of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034, Russia
| | - K S Rutkowski
- Department of Physics, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034, Russia.
| | - M Rospenk
- Faculty of Chemistry, University of Wroclaw, Joliot Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
9
|
Melikova S, Rutkowski K, Horochowska M, Rospenk M. Conformational origin of temperature changes in the IR spectrum of isoflurane. A cryosolution and ab initio study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Andrade LAF, Silla JM, Stephens SL, Marat K, da Cunha EFF, Ramalho TC, van Wijngaarden J, Freitas MP. Conformational Exploration of Enflurane in Solution and in a Biological Environment. J Phys Chem A 2015; 119:10735-42. [PMID: 26461140 DOI: 10.1021/acs.jpca.5b08087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enflurane is a fluorinated volatile anesthetic, whose bioactive conformation is not known. Actually, a few studies have reported on the conformations of enflurane in nonpolar solution and gas phase. The present computational and spectroscopic (infrared and NMR) work shows that three pairs of isoenergetic conformers take place in the gas phase, neat liquid, polar, and nonpolar solutions. According to docking studies, a single conformation is largely preferred over its isoenergetic isomers to complex with the active site of Integrin LFA-1 enzyme (PDB code: 3F78 ), where the widely used anesthetic isoflurane (a constitutional isomer of enflurane) is known to bind. Weak hydrogen bonding from an electrostatic interaction between the CHF2 hydrogen and the central CF2 fluorines was not found to rule the conformational isomerism of enflurane. Moreover, intramolecular interactions based on steric, electrostatic, and hyperconjugative effects usually invoked to describe the anomeric effect are not responsible for the possible bioactive conformation of enflurane, which is rather governed by the enzyme induced fit.
Collapse
Affiliation(s)
- Laize A F Andrade
- Department of Chemistry, Federal University of Lavras , 37200-000, Lavras, MG, Brazil
| | - Josué M Silla
- Department of Chemistry, Federal University of Lavras , 37200-000, Lavras, MG, Brazil
| | - Susanna L Stephens
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - Kirk Marat
- Department of Chemistry, University of Manitoba , Winnipeg, MB R3T 2N2, Canada
| | - Elaine F F da Cunha
- Department of Chemistry, Federal University of Lavras , 37200-000, Lavras, MG, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Federal University of Lavras , 37200-000, Lavras, MG, Brazil
| | | | - Matheus P Freitas
- Department of Chemistry, Federal University of Lavras , 37200-000, Lavras, MG, Brazil
| |
Collapse
|
11
|
Vibrational spectra and conformational analysis of desflurane. A cryosolution and ab initio study. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|