1
|
Kuntar SP, Ghosh A, Ghanty TK. Theoretical prediction of donor-acceptor type novel complexes with strong noble gas-boron covalent bond. Phys Chem Chem Phys 2024; 26:4975-4988. [PMID: 38258349 DOI: 10.1039/d3cp02667a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The experimental identification of NgBeO molecules, followed by the recent theoretical exploration of super-strong NgBO+ (Ng = He-Rn) ions motivated us to investigate the stability of iso-electronic NgBNH+ (Ng = He-Rn) ions using various ab initio-based quantum chemical methods. The hydrogen-like chemical behavior of gold in small clusters and molecules also inspired us to study the nature of the bonding interactions in NgBNAu+ ions compared to that in NgBNH+ ions. The calculated Ng-B bond lengths in the predicted ions have been found to be much lower than the corresponding covalent limits, indicating a covalent Ng-B interaction in both the NgBNH+ and NgBNAu+ ions. In addition, the Ng-B bond dissociation energies are found to be in the range of 136.7-422.8 kJ mol-1 for NgBNH+ and 77.4-319.1 kJ mol-1 for NgBNAu+, implying the stable nature of the predicted ions. Interestingly, the Ng-B bond length (except for Ne) is the lowest reported to date together with the highest He-B and Ne-B binding energies considering all the neutral and cationic complexes containing Ng-B bonding motifs. Moreover, the natural bonding orbital (NBO) and electron density-based atoms-in-molecule (AIM) analysis reveal the covalent nature of the Ng-B bond in the predicted ions. Furthermore, the energy decomposition analysis together with the natural bond orbital in the chemical valence (EDA-NOCV) studies indicate that the orbital interaction energy is the main contributor to the total attraction energy in the Ng-B bonds. All the calculated results indicate the hydrogen-like chemical behavior of gold in the predicted NgBNM+ ions, showing further evidence of the concept of "gold-hydrogen analogy". Also, for comparison, the corresponding Cu and Ag analogs are investigated. All the computed results together with the experimental identification of the NgMX (Ng = Ar-Xe; M = Cu, Ag, Au; X = F, Cl), ArOH+, and NgBeO (Ng = Ar-Xe) systems clearly indicate that it may be possible to prepare and characterize the predicted NgBNM+ ions experimentally using suitable technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India
- Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
2
|
Kuntar SP, Ghosh A, Ghanty TK. Prediction of donor-acceptor-type novel noble gas complexes in the triplet electronic state. Phys Chem Chem Phys 2023; 25:6987-6994. [PMID: 36807359 DOI: 10.1039/d2cp05813h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Closed-shell noble gas (Ng) compounds in the singlet electronic state have been extensively studied in the past two decades after the revolutionary discovery of 1HArF molecule. Motivated by the experimental identification of very strong donor-acceptor-type singlet-state Ng complex 1ArOH+, in the present article, for the first time, we report new donor-acceptor-type noble gas complexes in the triplet electronic state (3NgBeN+ (Ng = He-Rn)), where most of the Ng-Be bond lengths are smaller than the corresponding covalent limits. The newly proposed complexes are predicted to be stable by various computational tools, including coupled-cluster and multireference-based methods, with strong Ng-Be bonding (40.4-196.2 kJ mol-1). We have also investigated 3NgBeP+ (Ng = He-Rn) complexes for the purpose of comparison. Various computational results, including the structural parameters, bonding energies, vibrational frequencies, and atoms-in-molecule properties suggest that it may be possible to prepare and characterize these triplet state complexes through suitable experimental technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School complex, Anushaktinagar, Mumbai 400094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
3
|
Kuntar SP, Ghosh A, Ghanty TK. Superstrong Chemical Bonding of Noble Gases with Oxidoboron (BO +) and Sulfidoboron (BS +). J Phys Chem A 2022; 126:7888-7900. [PMID: 36264945 DOI: 10.1021/acs.jpca.2c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inspired by the overwhelming exploration of noble gas-boron (Ng-B) bond containing chemical compounds, the stability of the Ng bound BY+ and AlY+ (Y = O and S) has been investigated by using various ab initio based quantum chemical methods. Ng atoms are found to form exceptionally strong bonds with BO+ species in the predicted NgBO+ (Ng = He-Rn) complexes with remarkably high Ng-B dissociation energies ranging from 138.0 to 462.2 kJ mol-1 for the He-Rn series. It is the highest ever Ng-B binding energy in conjunction with the smallest Ng-B bond length for any of the cationic species involving a Ng-B bond as reported until today. More importantly, the calculated Ng-B bond lengths have been found to be much lower than the respective covalent limits in both NgBO+ and NgBS+ ions. The electronegativity difference between O and S atoms has been reflected nicely in the Ng-B and Ng-Al binding energies, which are found to be 91.9-346.5, 9.6-169.2, and 6.8-142.1 kJ mol-1 in NgBS+, NgAlO+, and NgAlS+, respectively. The strong covalent bonding between Ng and B/Al atoms in the predicted chemical systems has also been supported by the natural bonding orbital (NBO) and electron density based atoms-in-molecule (AIM) analysis. In addition, the energy decomposition analysis (EDA) in combination with the natural bond orbital for chemical valence (NOCV) indicates that the orbital interaction term is the prime contributor to the total attraction energy in the Ng-B and Ng-Al bonds. Furthermore, Ng-B and Ng-Al bonding can be assessed using the donor-acceptor model where the σ-electron donation that takes place from Ng (HOMO) → XY+ (LUMO) (X = B and Al; Y = O and S) is the major contributor to the orbital interaction energy. All the computational results along with the very recent experimental observation of ArOH+ and NgMX (Ng = Ar-Xe; M = Cu, Ag, Au; X = F, Cl) clearly indicate that it might be possible to synthesize and characterize these superstrong complexes, NgXY+ (Ng = He-Rn; X = B and Al; Y = O and S), under suitable experimental technique(s).
Collapse
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400 094, India.,Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
4
|
Ghosh A, Maitra A, Kuntar SP, Ghanty TK. Stability-Order Reversal in FSiY and FYSi (Y = N and P) Molecules after the Insertion of a Noble Gas Atom. J Phys Chem A 2022; 126:1132-1143. [PMID: 35157456 DOI: 10.1021/acs.jpca.1c10424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent theoretical prediction and experimental identification of fluorinated noble gas cyanides and isocyanides motivate us to explore a unique novel series of neutral noble gas-inserted heavier cyanofluoride isomers, FNgYSi and FNgSiY (Ng = Kr, Xe, and Rn; Y = N and P), theoretically using quantum chemical calculations. The concerned minima and saddle point geometries have been optimized using DFT, MP2, and CCSD(T) methods. The precursor molecule FSiY is more stable than its isomer FYSi, and the stability order is found to be reversed after the insertion of a noble gas (Ng) atom into them which is in contrast to the previously reported FCN/FNC systems where the stability order in the precursors remains intact after the insertion of a Ng atom into them. The predicted FNgYSi molecules are metastable in nature as they are kinetically stable but thermodynamically unstable with respect to the global minima products (FYSi and Ng). All the calculations for the corresponding FNgSiY molecules clearly indicate that the less stable FNgSiY behaves similarly to the FNgYSi in all respects. The energetics, force constant, and spectroscopic data strongly reinforce the possibility of occurrence of these predicted FNgYSi and FNgSiY molecules which might be experimentally realized under suitable cryogenic condition(s).
Collapse
Affiliation(s)
- Ayan Ghosh
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India
| | - Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, , Mumbai 400 094, India.,Bio Science Group, Bhabha Atomic Research Centre, Training School Complex, Anushakti Nagar, Mumbai 400 085, India
| |
Collapse
|
5
|
Kuntar SP, Ghosh A, Ghanty TK. Theoretical prediction of FNgM3–kHk (Ng = Ar, Kr, Xe, and Rn; M = Cu, Ag and Au; k = 0–2) molecules. Mol Phys 2022. [DOI: 10.1080/00268976.2021.2020924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Subrahmanya Prasad Kuntar
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Ayan Ghosh
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Laser and Plasma Technology Division, Beam Technology Development Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapan K. Ghanty
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Bio Science Group, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
6
|
Kuntar SP, Ghosh A, Ghanty TK. Existence of Noble Gas Inserted Phosphorus Fluorides: FNgPF 2 and FNgPF 4 with Ng-P Covalent Bond (Ng = Ar, Kr, Xe and Rn). Phys Chem Chem Phys 2022; 24:20466-20479. [DOI: 10.1039/d2cp02329f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Very limited literature on noble gas (Ng)-phosphorous chemical bonding and our recent theoretical prediction of FNgP molecule motivates us to explore a unique novel class of neutral noble gas inserted...
Collapse
|
7
|
|
8
|
How do halogen atoms affect Xe-Mo double bond? A theoretical study of X2XeMoY2 (X = F, Cl, Br; Y = F, Cl, Br). COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Alkorta I, Elguero J. Interaction ofN-Heterocyclic Carbenes and Simple Carbenes with Small Molecules (One to Three Atoms) Excluding Metals: Formation of Covalent C-X Bonds. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica; CSIC; Juan de la Cierva, 3 Madrid E-28006 Spain
| | - José Elguero
- Instituto de Química Médica; CSIC; Juan de la Cierva, 3 Madrid E-28006 Spain
| |
Collapse
|