1
|
Uvarov MN, Kobeleva ES, Degtyarenko KM, Zinovyev VA, Popov AA, Mostovich EA, Kulik LV. Fast Recombination of Charge-Transfer State in Organic Photovoltaic Composite of P3HT and Semiconducting Carbon Nanotubes Is the Reason for Its Poor Photovoltaic Performance. Int J Mol Sci 2023; 24:ijms24044098. [PMID: 36835508 PMCID: PMC9961616 DOI: 10.3390/ijms24044098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Although the photovoltaic performance of the composite of poly-3-hexylthiophene (P3HT) with semiconducting single-walled carbon nanotubes (s-SWCNT) is promising, the short-circuit current density jSC is much lower than that for typical polymer/fullerene composites. Out-of-phase electron spin echo (ESE) technique with laser excitation of the P3HT/s-SWCNT composite was used to clarify the origin of the poor photogeneration of free charges. The appearance of out-of-phase ESE signal is a solid proof that the charge-transfer state of P3HT+/s-SWCNT- is formed upon photoexcitation and the electron spins of P3HT+ and s-SWCNT- are correlated. No out-of-phase ESE signal was detected in the same experiment with pristine P3HT film. The out-of-phase ESE envelope modulation trace for P3HT/s-SWCNT composite was close to that for the polymer/fullerene photovoltaic composite PCDTBT/PC70BM, which implies a similar distance of initial charge separation in the range 2-4 nm. However, out-of-phase ESE signal decay with delay after laser flash increase for P3HT/s-SWCNT composite was much faster, with a characteristic time of 10 µs at 30 K. This points to the higher geminate recombination rate for the P3HT/s-SWCNT composite, which may be one of the reasons for the relatively poor photovoltaic performance of this system.
Collapse
Affiliation(s)
- Mikhail N. Uvarov
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena S. Kobeleva
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Vladimir A. Zinovyev
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander A. Popov
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Laboratory of Organic Optoelectronics of the Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeny A. Mostovich
- Laboratory of Organic Optoelectronics of the Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Leonid V. Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
2
|
Gao Q, Qi J, Chen K, Xia M, Hu Y, Mei A, Han H. Halide Perovskite Crystallization Processes and Methods in Nanocrystals, Single Crystals, and Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200720. [PMID: 35385587 DOI: 10.1002/adma.202200720] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Halide perovskite semiconductors with extraordinary optoelectronic properties have been fascinatedly studied. Halide perovskite nanocrystals, single crystals, and thin films have been prepared for various fields, such as light emission, light detection, and light harvesting. High-performance devices rely on high crystal quality determined by the nucleation and crystal growth process. Here, the fundamental understanding of the crystallization process driven by supersaturation of the solution is discussed and the methods for halide perovskite crystals are summarized. Supersaturation determines the proportion and the average Gibbs free energy changes for surface and volume molecular units involved in the spontaneous aggregation, which could be stable in the solution and induce homogeneous nucleation only when the solution exceeds a required minimum critical concentration (Cmin ). Crystal growth and heterogeneous nucleation are thermodynamically easier than homogeneous nucleation due to the existent surfaces. Nanocrystals are mainly prepared via the nucleation-dominated process by rapidly increasing the concentration over Cmin , single crystals are mainly prepared via the growth-dominated process by keeping the concentration between solubility and Cmin , while thin films are mainly prepared by compromising the nucleation and growth processes to ensure compactness and grain sizes. Typical strategies for preparing these three forms of halide perovskites are also reviewed.
Collapse
Affiliation(s)
- Qiaojiao Gao
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianhang Qi
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kai Chen
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Minghao Xia
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yue Hu
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Anyi Mei
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Hongwei Han
- Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|