1
|
Guerra-Barroso A, Pérez-Badell Y, Montero-Alejo AL, Montero-Cabrera LA. Oligothiophene-Based Photovoltaic Materials for Organic Solar Cells: Exciton Properties by the CNDOL Fockian Approach. J Phys Chem A 2025; 129:3202-3210. [PMID: 40169940 DOI: 10.1021/acs.jpca.4c07959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
In this study, we apply the CNDOL/2SS approximate Fockian with the configuration interaction of singles (CIS) method to explore the excitonic properties of oligothiophene-based materials for organic solar cells. Our calculations of the excited states and charge density distributions of isolated chromophores and a donor-acceptor pair align closely with experimental data. The methodology used is reliable and useful for addressing complex donor-acceptor systems and their eventual design. The prediction of exciton binding energy using the Coulomb and exchange (ECE) term of the CIS energy transitions, combined with charge density difference maps to visualize the electronic structure of excitons, aids in distinguishing charge transfer states between multiple transitions present in the molecular aggregates representing the donor-acceptor pair. Our results indicate that the donor-acceptor blend Tz6T:eC9-4F exhibits strong low-energy light absorption and a state alignment that enables barrier-free charge transport. The sandwich-type arrangement of this pair reveals a charge transfer (CT) state characterized by low exciton binding energy (low ECE term), highlighting its potential for optimizing organic solar cell performance. In contrast, less-ordered arrangements of the donor-acceptor pair show CT states at higher energies, which may compete with other deactivation processes and reduce the efficiency. This study provides a cost-effective approach to predicting and interpreting the feasibility of charge transfer in molecular aggregate designs for solar cells.
Collapse
Affiliation(s)
- Alberto Guerra-Barroso
- Laboratorio de Química Computacional y Teórica, Departamento de Química Física, Facultad de Química, Universidad de La Habana, Calle San Lázaro sn., La Habana 10400, Cuba
| | - Yoana Pérez-Badell
- Laboratorio de Química Computacional y Teórica, Departamento de Química Física, Facultad de Química, Universidad de La Habana, Calle San Lázaro sn., La Habana 10400, Cuba
| | - Ana L Montero-Alejo
- Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente (FCNMM), Universidad Tecnológica Metropolitana, José Pedro Alessandri 1242, Ñuñoa 7800002, Santiago, Chile
| | - Luis A Montero-Cabrera
- Laboratorio de Química Computacional y Teórica, Departamento de Química Física, Facultad de Química, Universidad de La Habana, Calle San Lázaro sn., La Habana 10400, Cuba
- Donostia International Physics Center (DIPC), Donostia - San Sebastián, Basque Country 20018, Spain
| |
Collapse
|
2
|
Tremblay JC, Blanc A, Krause P, Giri S, Dixit G. Probing Electronic Symmetry Reduction during Charge Migration via Time-Resolved X-Ray Diffraction. Chemphyschem 2023; 24:e202200463. [PMID: 36166371 DOI: 10.1002/cphc.202200463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 01/19/2023]
Abstract
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.
Collapse
Affiliation(s)
| | - Ambre Blanc
- CNRS-Université de Lorraine, LPCT, 57070, Metz, France
| | - Pascal Krause
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Sucharita Giri
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
Langkabel F, Bande A. Quantum-Compute Algorithm for Exact Laser-Driven Electron Dynamics in Molecules. J Chem Theory Comput 2022; 18:7082-7092. [PMID: 36399652 DOI: 10.1021/acs.jctc.2c00878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this work, we investigate the capability of known quantum computing algorithms for fault-tolerant quantum computing to simulate the laser-driven electron dynamics of excitation and ionization processes in small molecules such as lithium hydride, which can be benchmarked against the most accurate time-dependent full configuration interaction (TD-FCI) calculations. The conventional TD-FCI wave packet propagation is reproduced using the Jordan-Wigner transformation for wave function and operators and the Trotter product formula for expressing the propagator. In addition, the time-dependent dipole moment, as an example of a time-dependent expectation value, is calculated using the Hadamard test. To include non-Hermitian operators in the ionization dynamics, a similar approach to the quantum imaginary time evolution (QITE) algorithm is employed to translate the propagator, including a complex absorption potential, into quantum gates. The computations are executed on a quantum computer simulator. By construction, all quantum computer algorithms, except for the QITE algorithm used only for ionization but not for excitation dynamics, would scale polynomially on a quantum computer with fully entangled qubits. In contrast, TD-FCI scales exponentially. Hence, quantum computation holds promises for substantial progress in the understanding of electron dynamics of excitation processes in increasingly large molecular systems, as has already been witnessed in electronic structure theory.
Collapse
Affiliation(s)
- Fabian Langkabel
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195Berlin, Germany
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109Berlin, Germany
| |
Collapse
|
4
|
Pérez-Badell Y, Montero-Cabrera LA. The CNDOL Fockian with the configuration interaction of single excited wave functions to model the exciton properties of large molecular systems for photovoltaic devices. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2151945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yoana Pérez-Badell
- Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
| | - Luis A. Montero-Cabrera
- Laboratorio de Química Computacional y Teórica, Facultad de Química, Universidad de La Habana, La Habana, Cuba
- Donostia International Physics Center, Donostia – San Sebastian, Spain
| |
Collapse
|
5
|
Buchner F, Kirschbaum T, Venerosy A, Girard H, Arnault JC, Kiendl B, Krueger A, Larsson K, Bande A, Petit T, Merschjann C. Early dynamics of the emission of solvated electrons from nanodiamonds in water. NANOSCALE 2022; 14:17188-17195. [PMID: 36394505 PMCID: PMC9714771 DOI: 10.1039/d2nr03919b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Solvated electrons are among the most reductive species in an aqueous environment. Diamond materials have been proposed as a promising source of solvated electrons, but the underlying emission process in water remains elusive so far. Here, we show spectroscopic evidence for the emission of solvated electrons from detonation nanodiamonds upon excitation with both deep ultraviolet (225 nm) and visible (400 nm) light using ultrafast transient absorption. The crucial role of surface termination in the emission process is evidenced by comparing hydrogenated, hydroxylated and carboxylated nanodiamonds. In particular, a transient response that we attribute to solvated electrons is observed on hydrogenated nanodiamonds upon visible light excitation, while it shows a sub-ps recombination due to trap states when excited with deep ultraviolet light. The essential role of surface reconstructions on the nanodiamonds in these processes is proposed based on density functional theory calculations. These results open new perspectives for solar-driven emission of solvated electrons in an aqueous phase using nanodiamonds.
Collapse
Affiliation(s)
- Franziska Buchner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Freie Universität Berlin, FB Mathematik & Informatik, Artificial Intelligence for the Sciences, Arnimallee 12, D-14195 Berlin, Germany
| | - Amélie Venerosy
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
| | - Hugues Girard
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif sur Yvette Cedex, France
| | - Jean-Charles Arnault
- CEA, LIST, Diamond Sensors Laboratory, Bâtiment 451, PC 45, 91191 Gif sur Yvette Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif sur Yvette Cedex, France
| | - Benjamin Kiendl
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Anke Krueger
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Karin Larsson
- Uppsala University, Lägerhyddsvägen 1, 751 21, Uppsala, Sweden
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Tristan Petit
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Christoph Merschjann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| |
Collapse
|