1
|
Webb JP, Paiva AC, Rossoni L, Alstrom-Moore A, Springthorpe V, Vaud S, Yeh V, Minde DP, Langer S, Walker H, Hounslow A, Nielsen DR, Larson T, Lilley K, Stephens G, Thomas GH, Bonev BB, Kelly DJ, Conradie A, Green J. Multi-omic based production strain improvement (MOBpsi) for bio-manufacturing of toxic chemicals. Metab Eng 2022; 72:133-149. [DOI: 10.1016/j.ymben.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
2
|
Yeh V, Goode A, Johnson D, Cowieson N, Bonev BB. The Role of Lipid Chains as Determinants of Membrane Stability in the Presence of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1348-1359. [PMID: 35045250 DOI: 10.1021/acs.langmuir.1c02332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biofermentative production of styrene from renewable carbon sources is crucially dependent on strain tolerance and viability at elevated styrene concentrations. Solvent-driven collapse of bacterial plasma membranes limits yields and is technologically restrictive. Styrene is a hydrophobic solvent that readily partitions into the membrane interior and alters membrane-chain order and packing. We investigate styrene incorporation into model membranes and the role lipid chains play as determinants of membrane stability in the presence of styrene. MD simulations reveal styrene phase separation followed by irreversible segregation into the membrane interior. Solid state NMR shows committed partitioning of styrene into the membrane interior with persistence of the bilayer phase up to 67 mol % styrene. Saturated-chain lipid membranes were able to retain integrity even at 80 mol % styrene, whereas in unsaturated lipid membranes, we observe the onset of a non-bilayer phase of small lipid aggregates in coexistence with styrene-saturated membranes. Shorter-chain saturated lipid membranes were seen to tolerate styrene better, which is consistent with observed chain length reduction in bacteria grown in the presence of small molecule solvents. Unsaturation at mid-chain position appears to reduce the membrane tolerance to styrene and conversion from cis- to trans-chain unsaturation does not alter membrane phase stability but the lipid order in trans-chains is less affected than cis.
Collapse
Affiliation(s)
- Vivien Yeh
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Alice Goode
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - David Johnson
- Lucite International, Wilton Centre, Wilton, Redcar TS10 4RF, U.K
| | | | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| |
Collapse
|
3
|
Goode A, Yeh V, Bonev BB. Interactions of polymyxin B with lipopolysaccharide-containing membranes. Faraday Discuss 2021; 232:317-329. [PMID: 34550139 PMCID: PMC8704168 DOI: 10.1039/d1fd00036e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to antibiotics constantly remodels the battlefront between infections and antibiotic therapy. Polymyxin B, a cationic peptide with an anti-Gram-negative spectrum of activity is re-entering use as a last resort measure and as an adjuvant. We use fluorescence dequenching to investigate the role of the rough chemotype bacterial lipopolysaccharide from E. coli BL21 as a molecular facilitator of membrane disruption by LPS. The minimal polymyxin B/lipid ratio required for leakage onset increased from 5.9 × 10−4 to 1.9 × 10−7 in the presence of rLPS. We confirm polymyxin B activity against E. coli BL21 by the agar diffusion method and determined a MIC of 291 μg ml−1. Changes in lipid membrane stability and dynamics in response to polymyxin and the role of LPS are investigated by 31P NMR and high resolution 31P MAS NMR relaxation is used to monitor selective molecular interactions between polymyxin B and rLPS within bilayer lipid membranes. We observe a strong facilitating effect from rLPS on the membrane lytic properties of polymyxin B and a specific, pyrophosphate-mediated process of molecular recognition of LPS by polymyxin B. Polymyxin B uses bacterial LPS as docking receptor to cross the outer membrane.![]()
Collapse
Affiliation(s)
- Alice Goode
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Vivien Yeh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
4
|
Yeh V, Goode A, Eastham G, Rambo RP, Inoue K, Doutch J, Bonev BB. Membrane Stability in the Presence of Methacrylate Esters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9649-9657. [PMID: 32202793 DOI: 10.1021/acs.langmuir.9b03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioproduction of poly(methyl methacrylate) is a fast growing global industry that is limited by cellular toxicity of monomeric methacrylate intermediates to the producer strains. Maintaining high methacrylate concentrations during biofermentation, required by economically viable technologies, challenges bacterial membrane stability and cellular viability. Studying the stability of model lipid membranes in the presence of methacrylates offers unique molecular insights into the mechanisms of methacrylate toxicity, as well as into the fundamental structural bases of membrane assembly. We investigate the structure and stability of model membranes in the presence of high levels of methacrylate esters using solid-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS). Wide-line 31P NMR spectroscopy shows that butyl methacrylate (BMA) can be incorporated into the lipid bilayer at concentrations as high as 75 mol % without significantly disrupting membrane integrity and that lipid acyl chain composition can influence membrane tolerance and ability to accommodate BMA. Using high resolution 13C magic angle spinning (MAS) NMR, we show that the presence of 75 mol % BMA lowers the lipid main transition temperature by over 12 degrees, which suggests that BMA intercalates between the lipid chains, causing uncoupling of collective lipid motions that are typically dominated by chain trans-gauche isomerization. Potential uncoupling of the bilayer leaflets to accommodate a separate BMA subphase was not supported by the SAXS experiments, which showed that membrane thickness remained unchanged even at 80% BMA. Reduced X-ray scattering contrast at the polar/apolar interface suggests BMA localization in that region between the lipid molecules.
Collapse
Affiliation(s)
- Vivien Yeh
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Alice Goode
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Graham Eastham
- Lucite International, Wilton Centre, Wilton, Redcar TS10 4RF, United Kingdom
| | - Robert P Rambo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Doutch
- Science and Technology Facilities Council, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
5
|
Lanne ABM, Goode A, Prattley C, Kumari D, Drasbek MR, Williams P, Conde-Álvarez R, Moriyón I, Bonev BB. Molecular recognition of lipopolysaccharide by the lantibiotic nisin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:83-92. [PMID: 30296414 DOI: 10.1016/j.bbamem.2018.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Nisin is a lanthionine antimicrobial effective against diverse Gram-positive bacteria and is used as a food preservative worldwide. Its action is mediated by pyrophosphate recognition of the bacterial cell wall receptors lipid II and undecaprenyl pyrophosphate. Nisin/receptor complexes disrupt cytoplasmic membranes, inhibit cell wall synthesis and dysregulate bacterial cell division. Gram-negative bacteria are much more tolerant to antimicrobials including nisin. In contrast to Gram-positives, Gram-negative bacteria possess an outer membrane, the major constituent of which is lipopolysaccharide (LPS). This contains surface exposed phosphate and pyrophosphate groups and hence can be targeted by nisin. Here we describe the impact of LPS on membrane stability in response to nisin and the molecular interactions occurring between nisin and membrane-embedded LPS from different Gram-negative bacteria. Dye release from liposomes shows enhanced susceptibility to nisin in the presence of LPS, particularly rough LPS chemotypes that lack an O-antigen whereas LPS from microorganisms sharing similar ecological niches with antimicrobial producers provides only modest enhancement. Increased susceptibility was observed with LPS from pathogenic Klebsiella pneumoniae compared to LPS from enteropathogenic Salmonella enterica and gut commensal Escherichia coli. LPS from Brucella melitensis, an intra-cellular pathogen which is adapted to invade professional and non-professional phagocytes, appears to be refractory to nisin. Molecular complex formation between nisin and LPS was studied by solid state MAS NMR and revealed complex formation between nisin and LPS from most organisms investigated except B. melitensis. LPS/nisin complex formation was confirmed in outer membrane extracts from E. coli.
Collapse
Affiliation(s)
- Alice B M Lanne
- School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alice Goode
- School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Prattley
- School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Divya Kumari
- School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, UK
| | - Mette Ryun Drasbek
- DuPont Nutrition Biosciences ApS, Edwin Rahrs Vej 38, DK-8220 Brabrand, Denmark
| | - Paul Williams
- School of Life Sciences, CBS, University of Nottingham, Nottingham NG7 2RD, UK
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical, Instituto de Investigación Sanitaria de Navarra, and Departamento de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Boyan B Bonev
- School of Life Sciences, QMC, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
6
|
Ciesielski F, Griffin DC, Loraine J, Rittig M, Delves-Broughton J, Bonev BB. Recognition of Membrane Sterols by Polyene Antifungals Amphotericin B and Natamycin, A (13)C MAS NMR Study. Front Cell Dev Biol 2016; 4:57. [PMID: 27379235 PMCID: PMC4911417 DOI: 10.3389/fcell.2016.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/30/2016] [Indexed: 01/30/2023] Open
Abstract
The molecular action of polyene macrolides with antifungal activity, amphotericin B and natamycin, involves recognition of sterols in membranes. Physicochemical and functional studies have contributed details to understanding the interactions between amphotericin B and ergosterol and, to a lesser extent, with cholesterol. Fewer molecular details are available on interactions between natamycin with sterols. We use solid state (13)C MAS NMR to characterize the impact of amphotericin B and natamycin on mixed lipid membranes of DOPC/cholesterol or DOPC/ergosterol. In cholesterol-containing membranes, amphotericin B addition resulted in marked increase in both DOPC and cholesterol (13)C MAS NMR linewidth, reflecting membrane insertion and cooperative perturbation of the bilayer. By contrast, natamycin affects little either DOPC or cholesterol linewidth but attenuates cholesterol resonance intensity preferentially for sterol core with lesser impact on the chain. Ergosterol resonances, attenuated by amphotericin B, reveal specific interactions in the sterol core and chain base. Natamycin addition selectively augmented ergosterol resonances from sterol core ring one and, at the same time, from the end of the chain. This puts forward an interaction model similar to the head-to-tail model for amphotericin B/ergosterol pairing but with docking on opposite sterol faces. Low toxicity of natamycin is attributed to selective, non-cooperative sterol engagement compared to cooperative membrane perturbation by amphotericin B.
Collapse
Affiliation(s)
- Filip Ciesielski
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - David C Griffin
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - Jessica Loraine
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | - Michael Rittig
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| | | | - Boyan B Bonev
- School of Life Sciences, Queen's Medical Centre, University of Nottingham Nottingham, UK
| |
Collapse
|
7
|
Johnson CL, Ridley H, Marchetti R, Silipo A, Griffin DC, Crawford L, Bonev B, Molinaro A, Lakey JH. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 2014; 92:440-52. [PMID: 24589252 PMCID: PMC4114557 DOI: 10.1111/mmi.12568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 12/03/2022]
Abstract
Colicins are a diverse family of large antibacterial protein toxins, secreted by and active against Escherichia coli and must cross their target cell's outer membrane barrier to kill. To achieve this, most colicins require an abundant porin (e.g. OmpF) plus a low‐copy‐number, high‐affinity, outer membrane protein receptor (e.g. BtuB). Recently, genetic screens have suggested that colicin N (ColN), which has no high‐affinity receptor, targets highly abundant lipopolysaccharide (LPS) instead. Here we reveal the details of this interaction and demonstrate that the ColN receptor‐binding domain (ColN‐R) binds to a specific region of LPS close to the membrane surface. Data from in vitro studies using calorimetry and both liquid‐ and solid‐state NMR reveal the interactions behind the in vivo requirement for a defined oligosaccharide region of LPS. Delipidated LPS (LPSΔLIPID) shows weaker binding; and thus full affinity requires the lipid component. The site of LPS binding means that ColN will preferably bind at the interface and thus position itself close to the surface of its translocon component, OmpF. ColN is, currently, unique among colicins in requiring LPS and, combined with previous data, this implies that the ColN translocon is distinct from those of other known colicins.
Collapse
Affiliation(s)
- Christopher L Johnson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G, Bonev BB, Mayer MJ, Narbad A. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 2013; 288:31938-51. [PMID: 24019531 PMCID: PMC3814790 DOI: 10.1074/jbc.m113.507418] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1-3)-β-Glcp-(1-5)-β-Galf-(1-6)-α-Glcp-(1-4)-β-Galp-(1-4)-β-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.
Collapse
Affiliation(s)
- Enes Dertli
- From the Gut Health and Food Safety Programme, Institute of Food Research, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ciesielski F, Griffin DC, Rittig M, Moriyón I, Bonev BB. Interactions of lipopolysaccharide with lipid membranes, raft models — A solid state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1731-42. [DOI: 10.1016/j.bbamem.2013.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/08/2013] [Accepted: 03/28/2013] [Indexed: 01/09/2023]
|
10
|
Zorin V, Ciesielski F, Griffin DC, Rittig M, Bonev BB. Heteronuclear chemical shift correlation and J-resolved MAS NMR spectroscopy of lipid membranes. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:925-934. [PMID: 20941803 DOI: 10.1002/mrc.2690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Direct observation of J-couplings remains a challenge in high-resolution solid-state NMR. In some cases, it is possible to use Lee-Goldburg (LG) homonuclear decoupling during rare spin observation in MAS NMR correlation spectroscopy of lipid membranes to obtain J-resolved spectra in the direct dimension. In one simple implementation, a wide line separation-type (13)C-(1)H HETCOR can provide high-resolution (1)H/(13)C spectra, which are J-resolved in both dimensions. Coupling constants, (1)J(HC), obtained from (1)H doublets, can be compared with scaled (1)J(θ)(CH)-values obtained from the (13)C multiplets to assess the LG efficiency and scaling factor. The use of homonuclear decoupling during proton evolution, LG-HETCOR-LG, can provide J-values, at least in the rare spin dimension, and allows measurements in less mobile membrane environments. The LG-decoupled spectroscopic approach is demonstrated on pure dioleoylphosphatidylcholine (DOPC) membranes and used to investigate lipid mixtures of DOPC/cholesterol and DOPC/cholesterol/sphingomyelin.
Collapse
|