1
|
Kohut G, Juhász T, Quemé-Peña M, Bősze SE, Beke-Somfai T. Controlling Peptide Function by Directed Assembly Formation: Mechanistic Insights Using Multiscale Modeling on an Antimicrobial Peptide-Drug-Membrane System. ACS OMEGA 2021; 6:15756-15769. [PMID: 34179620 PMCID: PMC8223213 DOI: 10.1021/acsomega.1c01114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 05/16/2023]
Abstract
Owing to their potential applicability against multidrug-resistant bacteria, antimicrobial peptides (AMPs) or host defense peptides (HDPs) gain increased attention. Besides diverse immunomodulatory roles, their classical mechanism of action mostly involves membrane disruption of microbes. Notably, their unbalanced overexpression has also been associated with host cell cytotoxicity in various diseases. Relatedly, AMPs can be subject to aggregate formation, either via self-assembly or together with other compounds, which has demonstrated a modulation effect on their biological functions, thus highly relevant both for drug targeting projects and understanding their in vivo actions. However, the molecular aspects of the related assembly formation are not understood. Here, we focused in detail on an experimentally studied AMP-drug system, i.e., CM15-suramin, and performed all-atom and coarse-grain (CG) simulations. Results obtained for all systems were in close line with experimental observations and indicate that the CM15-suramin aggregation is an energetically favorable and dynamic process. In the presence of bilayers, the peptide-drug assembly formation was highly dependent on lipid composition, and peptide aggregates themselves were also capable of binding to the membranes. Interestingly, longer CG simulations with zwitterionic membranes indicated an intermediate state in the presence of both AMP-drug assemblies and monomeric peptides located on the membrane surface. In sharp contrast, larger AMP-drug aggregates could not be detected with a negatively charged membrane, rather the AMPs penetrated its surface in a monomeric form, in line with previous in vitro observations. Considering experimental and theoretical results, it is promoted that in biological systems, cationic AMPs may often form associates with anionic compounds in a reversible manner, resulting in lower bioactivity. This is only mildly affected by zwitterionic membranes; however, membranes with a negative charge strongly alter the energetic preference of AMP assemblies, resulting in the dissolution of the complexes into the membrane. The phenomenon observed here at a molecular level can be followed in several experimental systems studied recently, where peptides interact with food colors, drug molecules, or endogenous compounds, which strongly indicates that reversible associate formation is a general phenomenon for these complexes. These results are hoped to be exploited in novel therapeutic strategies aiming to use peptides as drug targets and control AMP bioactivity by directed assembly formation.
Collapse
Affiliation(s)
- Gergely Kohut
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, H-1117 Budapest, Hungary
| | - Tünde Juhász
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Mayra Quemé-Peña
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, H-1117 Budapest, Hungary
| | - Szilvia Erika Bősze
- ELKH
Research Group of Peptide Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
2
|
Szigyártó IC, Deák R, Mihály J, Rocha S, Zsila F, Varga Z, Beke-Somfai T. Flow Alignment of Extracellular Vesicles: Structure and Orientation of Membrane-Associated Bio-macromolecules Studied with Polarized Light. Chembiochem 2018; 19:545-551. [PMID: 29237098 DOI: 10.1002/cbic.201700378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/17/2017] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles (EVs) are currently in scientific focus, as they have great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, and thus, additional insight into their molecular-level properties, membrane-protein interactions, and membrane rigidity is still needed. We here demonstrate the use of red-blood-cell-derived EVs (REVs) that polarized light spectroscopy techniques, linear and circular dichroism, can provide molecular-level structural information on these systems. Flow-linear dichroism (flow-LD) measurements show that EVs can be oriented by shear force and indicate that hemoglobin molecules are associated to the lipid bilayer in freshly released REVs. During storage, this interaction ceases; this is coupled to major protein conformational changes relative to the initial state. Further on, the degree of orientation gives insight into vesicle rigidity, which decreases in time parallel to changes in protein conformation. Overall, we propose that both linear dichroism and circular dichroism spectroscopy can provide simple, rapid, yet efficient ways to track changes in the membrane-protein interactions of EV components at the molecular level, which may also give insight into processes occurring during vesiculation.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Róbert Deák
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, Chemical Biology, Kemigården 4, 41296, Göteborg, Sweden
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 286, 1519, Budapest, Hungary.,Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, Kemigården 4, 41296, Göteborg, Sweden
| |
Collapse
|