1
|
Goodman MT, Lombardi C, Torrens A, Bresee C, Saloman JL, Li L, Yang Y, Fisher WE, Fogel EL, Forsmark CE, Conwell DL, Hart PA, Park WG, Topazian M, Vege SS, Van Den Eeden SK, Bellin MD, Andersen DK, Serrano J, Yadav D, Pandol SJ, Piomelli D. Association of Serum Endocannabinoid Levels with Pancreatitis and Pancreatitis-Related Pain. Cannabis Cannabinoid Res 2025; 10:60-70. [PMID: 39291350 PMCID: PMC11947650 DOI: 10.1089/can.2024.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background and Aims: This investigation examined the association of pancreatitis and pancreatitis-related pain with serum levels of two endocannabinoid molecules such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG) and two paracannabinoid molecules such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Methods: A case-control study was conducted within the Prospective Evaluation of Chronic Pancreatitis for Epidemiological and Translational Studies, including participants with no pancreas disease (N = 56), chronic abdominal pain of suspected pancreatic origin or indeterminate chronic pancreatitis (CP) (N = 22), acute pancreatitis (N = 33), recurrent acute pancreatitis (N = 57), and definite CP (N = 63). Results: Circulating AEA concentrations were higher in women than in men (p = 0.0499), and PEA concentrations were higher in obese participants than those who were underweight/normal or overweight (p = 0.003). Asymptomatic controls with no pancreatic disease had significantly (p = 0.03) lower concentrations of AEA compared with all disease groups combined. The highest concentrations of AEA were observed in participants with acute pancreatitis, followed by those with recurrent acute pancreatitis, chronic abdominal pain/indeterminant CP, and definite CP. Participants with pancreatitis reporting abdominal pain in the past year had significantly (p = 0.04) higher concentrations of AEA compared with asymptomatic controls. Levels of 2-AG were significantly lower (p = 0.02) among participants reporting abdominal pain in the past week, and pain intensity was inversely associated with concentrations of 2-AG and OEA. Conclusions: Endocannabinoid levels may be associated with stage of pancreatitis, perhaps through activation of the CB1 receptor. Validation of our findings would support the investigation of novel therapeutics, including cannabinoid receptor-1 antagonists, in this patient population.
Collapse
Affiliation(s)
- Marc T. Goodman
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christina Lombardi
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexa Torrens
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Catherine Bresee
- Department of Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jami L. Saloman
- Center for Pain Research, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Liang Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yunlong Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William E. Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Evan L. Fogel
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christopher E. Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - Darwin L. Conwell
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Phil A. Hart
- Division of Gastroenterology, Hepatology, & Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Walter G. Park
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
| | | | - Santhi S. Vege
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Melena D. Bellin
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jose Serrano
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dhiraj Yadav
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stephen J. Pandol
- Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - on behalf of the Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC)
- Prevention and Control Program, Cancer Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department and Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Center for Pain Research, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Division of Gastroenterology, Hepatology, & Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University Medical Center, Stanford, California, USA
- Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine Division of Gastroenterology, Hepatology & Nutrition University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
2
|
Ozdemır C, Celık OI, Zeybek A, Suzek T, Aftabı Y, Karakas Celık S, Edgunlu T. Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39673541 DOI: 10.1080/15257770.2024.2439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (p < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.
Collapse
Affiliation(s)
- Cilem Ozdemır
- Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ozgur Ilhan Celık
- Faculty of Medicine, Department of Pathology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Arife Zeybek
- Faculty of Medicine, Department of Thoracic Surgery, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tugba Suzek
- Faculty of Engineering, Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Younes Aftabı
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Sevim Karakas Celık
- Faculty of Medicine, Department of Medical Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Tuba Edgunlu
- Faculty of Medicine, Department of Medical Biology, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
3
|
Ohadi D, Kumar K, Ravula S, DesJarlais RL, Seierstad MJ, Shih AY, Hack MD, Schiffer JM. Input Pose is Key to Performance of Free Energy Perturbation: Benchmarking with Monoacylglycerol Lipase. J Chem Inf Model 2024; 64:8859-8869. [PMID: 39560439 DOI: 10.1021/acs.jcim.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Free energy perturbation (FEP) methodologies have become commonplace methods for modeling potency in hit-to-lead and lead optimization stages of drug discovery. The conformational states of the initial poses of compounds for FEP+ calculations are often set up by alignment to a cocrystal structure ligand, but it is not clear if this method provides the best result for all proteins or all ligands. Not only are ligand conformational states potential variables in modeling compound potency in FEP but also the selection of crystallographic water molecules for inclusion in the FEP input structures can impact FEP models. Here, we report the results of FEP calculations using FEP+ from Schrödinger and starting from maximum common substructure alignment and docked poses generated with an array of docking methodologies. As a benchmark data set, we use monoacylglycerol lipase (MAGL), an important clinical drug target in cancer malignancy, neurological diseases, and metabolic disorders, and a set of 17 MAGL inhibitors. We found a large variation among FEP+ correlations to experimental IC50 values depending on the method used to generate the input pose and that the inclusion of ligand-based information in the docking process, with some methods, increases the correlation between FEP+ free energies and IC50 values. Upon analysis of the initial poses, we found that the differences in FEP+ correlations stemmed from rotation around a tertiary amide bond as well as translation of the compound toward the more hydrophobic side of the MAGL pocket. FEP+ estimation improved across all pose modeling methods when hydrogen bond constraint information was added. However, simple maximum common substructure alignment in the presence of all crystallographic water molecules outperformed all other methods in correlation between estimated and experimental IC50 values. Taken together, these findings suggest that pose selection and crystallographic water inclusion greatly impact how well FEP+ estimated IC50 values align with experimental IC50 values and that modelers should benchmark a few different pose generation methodologies and different water inclusion strategies for their hit-to-lead and lead optimization drug discovery projects.
Collapse
Affiliation(s)
- Donya Ohadi
- Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kiran Kumar
- Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Suchitra Ravula
- Johnson & Johnson Innovative Medicine, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Renee L DesJarlais
- Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Mark J Seierstad
- Johnson & Johnson Innovative Medicine, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Amy Y Shih
- Johnson & Johnson Innovative Medicine, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Michael D Hack
- Johnson & Johnson Innovative Medicine, 3210 Merryfield Row, San Diego, California 92121, United States
| | - Jamie M Schiffer
- Johnson & Johnson Innovative Medicine, 3210 Merryfield Row, San Diego, California 92121, United States
| |
Collapse
|
4
|
Butini S, Grether U, Jung KM, Ligresti A, Allarà M, Postmus AGJ, Maramai S, Brogi S, Papa A, Carullo G, Sykes D, Veprintsev D, Federico S, Grillo A, Di Guglielmo B, Ramunno A, Stevens AF, Heer D, Lamponi S, Gemma S, Benz J, Di Marzo V, van der Stelt M, Piomelli D, Campiani G. Development of Potent and Selective Monoacylglycerol Lipase Inhibitors. SARs, Structural Analysis, and Biological Characterization. J Med Chem 2024; 67:1758-1782. [PMID: 38241614 DOI: 10.1021/acs.jmedchem.3c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
New potent, selective monoacylglycerol lipase (MAGL) inhibitors based on the azetidin-2-one scaffold ((±)-5a-v, (±)-6a-j, and (±)-7a-d) were developed as irreversible ligands, as demonstrated by enzymatic and crystallographic studies for (±)-5d, (±)-5l, and (±)-5r. X-ray analyses combined with extensive computational studies allowed us to clarify the binding mode of the compounds. 5v was identified as selective for MAGL when compared with other serine hydrolases. Solubility, in vitro metabolic stability, cytotoxicity, and absence of mutagenicity were determined for selected analogues. The most promising compounds ((±)-5c, (±)-5d, and (±)-5v) were used for in vivo studies in mice, showing a decrease in MAGL activity and increased 2-arachidonoyl-sn-glycerol levels in forebrain tissue. In particular, 5v is characterized by a high eudysmic ratio and (3R,4S)-5v is one of the most potent irreversible inhibitors of h/mMAGL identified thus far. These results suggest that the new MAGL inhibitors have therapeutic potential for different central and peripheral pathologies.
Collapse
Affiliation(s)
- Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Marco Allarà
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annemarieke G J Postmus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Samuele Maramai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 56126 Pisa, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, United Kingdom
| | - Dmitry Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Bruno Di Guglielmo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anna Ramunno
- Department of Pharmacy/DIFARMA, University of Salerno, via Giovanni Paolo II 132, Salerno 84084, Fisciano, Italy
| | - Anna Floor Stevens
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Jörg Benz
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur La Nutrition Et Les Aliments Fonctionnels (INAF), École de Nutrition, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
- Canada Excellence Research Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health, PO Box 2325, Quebec G1V 0A6, Canada
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, PO Box 2725, Québec G1V 4G5, Canada
- Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et Son Impact Sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu), Université Laval, PO Box 2325, Quebec G1V 0A6, Canada
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, 2300 CC, Leiden, Netherlands
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California 92697, United States
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
5
|
Forte N, Nicois A, Marfella B, Mavaro I, D'Angelo L, Piscitelli F, Scandurra A, De Girolamo P, Baldelli P, Benfenati F, Di Marzo V, Cristino L. Early endocannabinoid-mediated depolarization-induced suppression of excitation delays the appearance of the epileptic phenotype in synapsin II knockout mice. Cell Mol Life Sci 2024; 81:37. [PMID: 38214769 PMCID: PMC11072294 DOI: 10.1007/s00018-023-05029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024]
Abstract
The mechanism underlying the transition from the pre-symptomatic to the symptomatic state is a crucial aspect of epileptogenesis. SYN2 is a member of a multigene family of synaptic vesicle phosphoproteins playing a fundamental role in controlling neurotransmitter release. Human SYN2 gene mutations are associated with epilepsy and autism spectrum disorder. Mice knocked out for synapsin II (SynII KO) are prone to epileptic seizures that appear after 2 months of age. However, the involvement of the endocannabinoid system, known to regulate seizure development and propagation, in the modulation of the excitatory/inhibitory balance in the epileptic hippocampal network of SynII KO mice has not been explored. In this study, we investigated the impact of endocannabinoids on glutamatergic and GABAergic synapses at hippocampal dentate gyrus granule cells in young pre-symptomatic (1-2 months old) and adult symptomatic (5-8 months old) SynII KO mice. We observed an increase in endocannabinoid-mediated depolarization-induced suppression of excitation in young SynII KO mice, compared to age-matched wild-type controls. In contrast, the endocannabinoid-mediated depolarization-induced suppression of inhibition remained unchanged in SynII KO mice at both ages. This selective alteration of excitatory synaptic transmission was accompanied by changes in hippocampal endocannabinoid levels and cannabinoid receptor type 1 distribution among glutamatergic and GABAergic synaptic terminals contacting the granule cells of the dentate gyrus. Finally, inhibition of type-1 cannabinoid receptors in young pre-symptomatic SynII KO mice induced seizures during a tail suspension test. Our results suggest that endocannabinoids contribute to maintaining network stability in a genetic mouse model of human epilepsy.
Collapse
Affiliation(s)
- Nicola Forte
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Alessandro Nicois
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Brenda Marfella
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Isabella Mavaro
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy
| | - Anna Scandurra
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy.
- Faculty of Medicine and Faculty of Agricultural and Food Sciences, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada.
- Heart and Lung Research Institute of Université Laval, Québec City, QC, Canada.
- Institute for Nutrition and Functional Foods, Centre NUTRISS, Université Laval, Québec City, QC, Canada.
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli (NA), Italy.
| |
Collapse
|
6
|
Rathod SS, Agrawal YO. Phytocannabinoids as Potential Multitargeting Neuroprotectants in Alzheimer's Disease. Curr Drug Res Rev 2024; 16:94-110. [PMID: 37132109 DOI: 10.2174/2589977515666230502104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/04/2023]
Abstract
The Endocannabinoid System (ECS) is a well-studied system that influences a variety of physiological activities. It is evident that the ECS plays a significant role in metabolic activities and also has some neuroprotective properties. In this review, we emphasize several plant-derived cannabinoids such as β-caryophyllene (BCP), Cannabichromene (CBC), Cannabigerol (CBG), Cannabidiol (CBD), and Cannabinol (CBN), which are known to have distinctive modulation abilities of ECS. In Alzheimer's disease (AD), the activation of ECS may provide neuroprotection by modulating certain neuronal circuitry pathways through complex molecular cascades. The present article also discusses the implications of cannabinoid receptors (CB1 and CB2) as well as cannabinoid enzymes (FAAH and MAGL) modulators in AD. Specifically, CBR1 or CB2R modulations result in reduced inflammatory cytokines such as IL-2 and IL-6, as well as a reduction in microglial activation, which contribute to an inflammatory response in neurons. Furthermore, naturally occurring cannabinoid metabolic enzymes (FAAH and MAGL) inhibit the NLRP3 inflammasome complex, which may offer significant neuroprotection. In this review, we explored the multi-targeted neuroprotective properties of phytocannabinoids and their possible modulations, which could offer significant benefits in limiting AD.
Collapse
Affiliation(s)
- Sumit S Rathod
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
- Shri Vile Parle Kelavani Mandal's, Institute of Pharmacy, Dhule, Dist. Dhule, 424001, Maharashtra, India
| | - Yogeeta O Agrawal
- Department of Pharmacy, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist. Dhule, 425405, Maharashtra, India
| |
Collapse
|
7
|
Paredes-Ruiz KJ, Chavira-Ramos K, Galvan-Arzate S, Rangel-López E, Karasu Ç, Túnez I, Skalny AV, Ke T, Aschner M, Orozco-Morales M, Colín-González AL, Santamaría A. Monoacylglycerol Lipase Inhibition Prevents Short-Term Mitochondrial Dysfunction and Oxidative Damage in Rat Brain Synaptosomal/Mitochondrial Fractions and Cortical Slices: Role of Cannabinoid Receptors. Neurotox Res 2023; 41:514-525. [PMID: 37458923 DOI: 10.1007/s12640-023-00661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 11/29/2023]
Abstract
Inhibition of enzymes responsible for endocannabinoid hydrolysis represents an invaluable emerging tool for the potential treatment of neurodegenerative disorders. Monoacylglycerol lipase (MAGL) is the enzyme responsible for degrading 2-arachydonoylglycerol (2-AG), the most abundant endocannabinoid in the central nervous system (CNS). Here, we tested the effects of the selective MAGL inhibitor JZL184 on the 3-nitropropinic acid (3-NP)-induced short-term loss of mitochondrial reductive capacity/viability and oxidative damage in rat brain synaptosomal/mitochondrial fractions and cortical slices. In synaptosomes, while 3-NP decreased mitochondrial function and increased lipid peroxidation, JZL184 attenuated both markers. The protective effects evoked by JZL184 on the 3-NP-induced mitochondrial dysfunction were primarily mediated by activation of cannabinoid receptor 2 (CB2R), as evidenced by their inhibition by the selective CB2R inverse agonist JTE907. The cannabinoid receptor 1 (CB1R) also participated in this effect in a lesser extent, as evidenced by the CB1R antagonist/inverse agonist AM281. In contrast, activation of CB1R, but not CB2R, was responsible for the protective effects of JZL184 on the 3-NP-iduced lipid peroxidation. Protective effects of JZL184 were confirmed in other toxic models involving excitotoxicity and oxidative damage as internal controls. In cortical slices, JZL184 ameliorated the 3-NP-induced loss of mitochondrial function, the increase in lipid peroxidation, and the inhibition of succinate dehydrogenase (mitochondrial complex II) activity, and these effects were independent on CB1R and CB2R, as evidenced by the lack of effects of AM281 and JTE907, respectively. Our novel results provide experimental evidence that the differential protective effects exerted by JZL184 on the early toxic effects induced by 3-NP in brain synaptosomes and cortical slices involve MAGL inhibition, and possibly the subsequent accumulation of 2-AG. These effects involve pro-energetic and redox modulatory mechanisms that may be either dependent or independent of cannabinoid receptors' activation.
Collapse
Affiliation(s)
- Karen Jaqueline Paredes-Ruiz
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, S.S.A, 14269, Mexico City, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Karla Chavira-Ramos
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, S.S.A, 14269, Mexico City, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Sonia Galvan-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología Y Neurocirugía, S.S.A, 14269, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, S.S.A, 14269, Mexico City, Mexico
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, 06500, Beşevler, Ankara, Turkey
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba (IMIBIC); Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Córdoba, Spain
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Peoples' Friendship, University of Russia (RUDN University), Moscow, Russia
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 11354, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 11354, Bronx, NY, USA
| | - Mario Orozco-Morales
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía, S.S.A, 14269, Mexico City, Mexico
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, S.S.A, 14269, Mexico City, Mexico.
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Pinotsis N, Krüger A, Tomas N, Chatziefthymiou SD, Litz C, Mortensen SA, Daffé M, Marrakchi H, Antranikian G, Wilmanns M. Discovery of a non-canonical prototype long-chain monoacylglycerol lipase through a structure-based endogenous reaction intermediate complex. Nat Commun 2023; 14:7649. [PMID: 38012138 PMCID: PMC10682391 DOI: 10.1038/s41467-023-43354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
The identification and characterization of enzyme function is largely lacking behind the rapidly increasing availability of large numbers of sequences and associated high-resolution structures. This is often hampered by lack of knowledge on in vivo relevant substrates. Here, we present a case study of a high-resolution structure of an unusual orphan lipase in complex with an endogenous C18 monoacylglycerol ester reaction intermediate from the expression host, which is insoluble under aqueous conditions and thus not accessible for studies in solution. The data allowed its functional characterization as a prototypic long-chain monoacylglycerol lipase, which uses a minimal lid domain to position the substrate through a hydrophobic tunnel directly to the enzyme's active site. Knowledge about the molecular details of the substrate binding site allowed us to modulate the enzymatic activity by adjusting protein/substrate interactions, demonstrating the potential of our findings for future biotechnology applications.
Collapse
Affiliation(s)
- Nikos Pinotsis
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Greece
| | - Anna Krüger
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Nicolas Tomas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | | | - Claudia Litz
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Simon Arnold Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany
| | - Mamadou Daffé
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Garabed Antranikian
- Hamburg University of Technology, Kasernenstrasse 12, 21073, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, 22607, Hamburg, Germany.
- University Hamburg Clinical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany.
| |
Collapse
|
9
|
Wei Z, Xiong Q, Huang D, Wu Z, Chen Z. Causal relationship between blood metabolites and risk of five infections: a Mendelian randomization study. BMC Infect Dis 2023; 23:663. [PMID: 37805474 PMCID: PMC10559484 DOI: 10.1186/s12879-023-08662-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE Infectious diseases continue to pose a significant threat in the field of global public health, and our understanding of their metabolic pathogenesis remains limited. However, the advent of genome-wide association studies (GWAS) offers an unprecedented opportunity to unravel the relationship between metabolites and infections. METHODS Univariable and multivariable Mendelian randomization (MR) was commandeered to elucidate the causal relationship between blood metabolism and five high-frequency infection phenotypes: sepsis, pneumonia, upper respiratory tract infections (URTI), urinary tract infections (UTI), and skin and subcutaneous tissue infection (SSTI). GWAS data for infections were derived from UK Biobank and the FinnGen consortium. The primary analysis was conducted using the inverse variance weighted method on the UK Biobank data, along with a series of sensitivity analyses. Subsequently, replication and meta-analysis were performed on the FinnGen consortium data. RESULTS After primary analysis and a series of sensitivity analyses, 17 metabolites were identified from UK Biobank that have a causal relationship with five infections. Upon joint analysis with the FinGen cohort, 7 of these metabolites demonstrated consistent associations. Subsequently, we conducted a multivariable Mendelian randomization analysis to confirm the independent effects of these metabolites. Among known metabolites, genetically predicted 1-stearoylglycerol (1-SG) (odds ratio [OR] = 0.561, 95% confidence interval [CI]: 0.403-0.780, P < 0.001) and 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) (OR = 0.780, 95%CI: 0.689-0.883, P < 0.001) was causatively associated with a lower risk of sepsis, and genetically predicted phenylacetate (PA) (OR = 1.426, 95%CI: 1.152-1.765, P = 0.001) and cysteine (OR = 1.522, 95%CI: 1.170-1.980, P = 0.002) were associated with an increased risk of UTI. Ursodeoxycholate (UDCA) (OR = 0.906, 95%CI: 0.829-0.990, P = 0.029) is a protective factor against pneumonia. Two unknown metabolites, X-12407 (OR = 1.294, 95%CI: 1.131-1.481, P < 0.001), and X-12847 (OR = 1.344, 95%CI: 1.152-1.568, P < 0.001), were also identified as independent risk factors for sepsis. CONCLUSIONS In this MR study, we demonstrated a causal relationship between blood metabolites and the risk of developing sepsis, pneumonia, and UTI. However, there was no evidence of a causal connection between blood metabolites and the risk of URTI or SSTI, indicating a need for larger-scale studies to further investigate susceptibility to certain infection phenotypes.
Collapse
Affiliation(s)
- Zhengxiao Wei
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China.
| | - Qingqing Xiong
- Department of Scientific Research and Teaching, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Dan Huang
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Zhangjun Wu
- Department of Clinical Laboratory, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| | - Zhu Chen
- Department of Scientific Research and Teaching, Chengdu Public Health Clinical Medical Center & Public Health Clinical Center of Chengdu University of Traditional Chinese Medicine, 377 Jingming Road, Jinjiang District, Chengdu, 610066, China
| |
Collapse
|
10
|
Chen C. Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. Pharmacol Ther 2023; 244:108394. [PMID: 36966972 PMCID: PMC10123871 DOI: 10.1016/j.pharmthera.2023.108394] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Endocannabinoids are endogenous lipid signaling mediators that participate in a variety of physiological and pathological processes. 2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and is a full agonist of G-protein-coupled cannabinoid receptors (CB1R and CB2R), which are targets of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive ingredient in cannabis. While 2-AG has been well recognized as a retrograde messenger modulating synaptic transmission and plasticity at both inhibitory GABAergic and excitatory glutamatergic synapses in the brain, growing evidence suggests that 2-AG also functions as an endogenous terminator of neuroinflammation in response to harmful insults, thus maintaining brain homeostasis. Monoacylglycerol lipase (MAGL) is the key enzyme that degrades 2-AG in the brain. The immediate metabolite of 2-AG is arachidonic acid (AA), a precursor of prostaglandins (PGs) and leukotrienes. Several lines of evidence indicate that pharmacological or genetic inactivation of MAGL, which boosts 2-AG levels and reduces its hydrolytic metabolites, resolves neuroinflammation, mitigates neuropathology, and improves synaptic and cognitive functions in animal models of neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and traumatic brain injury (TBI)-induced neurodegenerative disease. Thus, it has been proposed that MAGL is a potential therapeutic target for treatment of neurodegenerative diseases. As the main enzyme hydrolyzing 2-AG, several MAGL inhibitors have been identified and developed. However, our understanding of the mechanisms by which inactivation of MAGL produces neuroprotective effects in neurodegenerative diseases remains limited. A recent finding that inhibition of 2-AG metabolism in astrocytes, but not in neurons, protects the brain from TBI-induced neuropathology might shed some light on this unsolved issue. This review provides an overview of MAGL as a potential therapeutic target for neurodegenerative diseases and discusses possible mechanisms underlying the neuroprotective effects of restraining degradation of 2-AG in the brain.
Collapse
|
11
|
Han S, Quach T, Hu L, Lim SF, Zheng D, Leong NJ, Sharma G, Bonner D, Simpson JS, Trevaskis NL, Porter CJH. Increasing Linker Chain Length and Intestinal Stability Enhances Lymphatic Transport and Lymph Node Exposure of Triglyceride Mimetic Prodrugs of a Model Immunomodulator Mycophenolic Acid. Mol Pharm 2023; 20:2675-2685. [PMID: 36996486 DOI: 10.1021/acs.molpharmaceut.3c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.
Collapse
Affiliation(s)
| | - Tim Quach
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | | | | | | | | | | | - Daniel Bonner
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | - Jamie S Simpson
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | | | | |
Collapse
|
12
|
Ramanathan R, Hatzios SK. Activity-based Tools for Interrogating Host Biology During Infection. Isr J Chem 2023; 63:e202200095. [PMID: 37744997 PMCID: PMC10512441 DOI: 10.1002/ijch.202200095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/18/2023]
Abstract
Host cells sense and respond to pathogens by dynamically regulating cell signaling. The rapid modulation of signaling pathways is achieved by post-translational modifications (PTMs) that can alter protein structure, function, and/or binding interactions. By using chemical probes to broadly profile changes in enzyme function or side-chain reactivity, activity-based protein profiling (ABPP) can reveal PTMs that regulate host-microbe interactions. While ABPP has been widely utilized to uncover microbial mechanisms of pathogenesis, in this review, we focus on more recent applications of this technique to the discovery of host PTMs and enzymes that modulate signaling within infected cells. Collectively, these advances underscore the importance of ABPP as a tool for interrogating the host response to infection and identifying potential targets for host-directed therapies.
Collapse
Affiliation(s)
- Renuka Ramanathan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
| | - Stavroula K. Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520 USA
- Microbial Sciences Institute, Yale University, West Haven, CT 06516 USA
- Department of Chemistry, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
13
|
Alkabbani D, Dahabiyeh LA, Taha MO. Dipeptidyl Peptidase-IV Blockers Potently Inhibit Monoglyceride Lipase: Investigation By Docking Studies And In Vitro Bioassay. Med Chem Res 2023; 32:165-175. [DOI: 10.1007/s00044-022-02998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
|
14
|
The monoacylglycerol lipase inhibitor, JZL184, has comparable effects to therapeutic hypothermia, attenuating global cerebral injury in a rat model of cardiac arrest. Biomed Pharmacother 2022; 156:113847. [DOI: 10.1016/j.biopha.2022.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/24/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
|
15
|
Berger N, Allerkamp H, Wadsack C. Serine Hydrolases in Lipid Homeostasis of the Placenta-Targets for Placental Function? Int J Mol Sci 2022; 23:6851. [PMID: 35743292 PMCID: PMC9223866 DOI: 10.3390/ijms23126851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.
Collapse
Affiliation(s)
- Natascha Berger
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Hanna Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (N.B.); (H.A.)
- BioTechMed-Graz, 8036 Graz, Austria
| |
Collapse
|
16
|
Kashyap A, Kumar S, Dutt R. A review on structurally diversified synthesized molecules as monoacylglycerol lipase inhibitors and their therapeutic uses. Curr Drug Res Rev 2022; 14:96-115. [PMID: 35232358 DOI: 10.2174/2589977514666220301111457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Monoacylglycerol is a metabolic key serine hydrolase, engaged in the regulation of signalling network system of endocannabinoids, which is associated with various physiological processes like pain, inflammation, feeding cognition and neurodegenerative diseases like Alzheimer, Parkinson's disease. The monoacylglycerol also found to act as a regulator and the free fatty acid provider in the proliferation of cancer cells, numerous aggressive tumours such as colorectal cancer, neuroblastoma and nasopharyngeal carcinoma. It also played an important role in increasing the concentration of specific lipids derived from free fatty acids like phosphatidic acid, lysophosphatidic acid, sphingosine-1-phosphate and prostaglandin E2. These signalling lipids are associated with cell proliferation, survival, tumour cell migration, contributing to tumour development, maturation and metastases. In the present study here, we are presenting a review on structurally diverse MAGL inhibitors, their development and their evaluation for different pharmacological activities.
Collapse
Affiliation(s)
- Abhishek Kashyap
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Suresh Kumar
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Rohit Dutt
- Pharmaceutical Chemistry Department, School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| |
Collapse
|
17
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
18
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
19
|
Rahman SMK, Uyama T, Hussain Z, Ueda N. Roles of Endocannabinoids and Endocannabinoid-like Molecules in Energy Homeostasis and Metabolic Regulation: A Nutritional Perspective. Annu Rev Nutr 2021; 41:177-202. [PMID: 34115519 DOI: 10.1146/annurev-nutr-043020-090216] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endocannabinoid system is involved in signal transduction in mammals. It comprises principally G protein-coupled cannabinoid receptors and their endogenous agonists, called endocannabinoids, as well as the enzymes and transporters responsible for the metabolism of endocannabinoids. Two arachidonic acid-containing lipid molecules, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, function as endocannabinoids. N-acylethanolamines and monoacylglycerols, in which the arachidonic acid chain is replaced with a saturated or monounsaturated fatty acid, are not directly involved in the endocannabinoid system but exhibit agonistic activities for other receptors. These endocannabinoid-like molecules include palmitoylethanolamide, oleoylethanolamide (OEA), and 2-oleoylglycerol. Endocannabinoids stimulate feeding behavior and the anabolism of lipids and glucose, while OEA suppresses appetite. Both central and peripheral systems are included in these nutritional and metabolic contexts. Therefore, they have potential in the treatment and prevention of obesity. We outline the structure, metabolism, and biological activities of endocannabinoids and related molecules, and focus on their involvement in energy homeostasis and metabolic regulation. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , , .,Department of Pharmaceutical Sciences, School of Pharmacy, Center for Pharmacogenetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa 761-0793, Japan; , ,
| |
Collapse
|
20
|
Analgesic and Anticancer Activity of Benzoxazole Clubbed 2-Pyrrolidinones as Novel Inhibitors of Monoacylglycerol Lipase. Molecules 2021; 26:molecules26082389. [PMID: 33924091 PMCID: PMC8074287 DOI: 10.3390/molecules26082389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
Collapse
|
21
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
22
|
Abstract
The science of cannabis and cannabinoids encompasses a wide variety of scientific disciplines and can appear daunting to newcomers to the field. The encroachment of folklore and ‘cannabis culture’ into scientific discussions can cloud the situation further. This Primer Review is designed to give a succinct overview of the chemistry of cannabis and cannabinoids. It is hoped that it will provide a useful resource for chemistry undergraduates, postgraduates and their instructors, and experienced chemists who require a comprehensive and up to date summary of the field. The Review begins with a brief overview of the history and botany of cannabis, then goes on to detail important aspects of the chemistry of phytocannabinoids, endocannabinoids and synthetic cannabinomimetics. Other natural constituents of the cannabis plant are then described including terpenes and terpenoids, polyphenolics, alkaloids, waxes and triglycerides, and important toxic contaminants. A discussion of key aspects of the pharmacology associated with cannabinoids and the endocannabinoid system then follows, with a focus on the cannabinoid receptors, CB1 and CB2. The medicinal chemistry of cannabis and cannabinoids is covered, highlighting the range of diseases targeted with cannabis and phytocannabinoids, as well as key aspects of phytocannabinoid metabolism, distribution, and delivery. The modulation of endocannabinoid levels through the inhibition of key endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) is then discussed. The Review concludes with an assessment of the much touted ‘entourage effect’. References to primary literature and more specialised reviews are provided throughout.
Collapse
|
23
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
24
|
Altamimi ASA, Bawa S, Athar F, Hassan MQ, Riadi Y, Afzal O. Pyrrolidin-2-one linked benzofused heterocycles as novel small molecule monoacylglycerol lipase inhibitors and antinociceptive agents. Chem Biol Drug Des 2020; 96:1418-1432. [PMID: 32575154 DOI: 10.1111/cbdd.13751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Eighteen pyrrolidin-2-one linked benzothiazole, and benzimidazole derivatives (10-27) were designed and synthesized. The structure of the compounds was confirmed by elemental and spectral (IR, 1 H-NMR and MS) data analysis. All the compounds were screened by human monoacylglycerol lipase (hMAGL) inhibition assay. Three benzimidazole compounds, 22 (4-Cl phenyl), 23 (3-Cl,4-F phenyl) and 25 (4-methoxy phenyl) were found to be the most potent, having an IC50 value of 8.6, 8.0 and 9.4 nm, respectively. Among them, the halogen-substituted phenyl derivatives, compound 22 (4-Cl phenyl) and compound 23 (3-Cl,4-F phenyl), showed micromolar potency against fatty acid amide hydrolase (FAAH), having an IC50 value of 35 and 24 µm, respectively. Benzimidazole derivative having 4-methoxyphenyl substitution (compound 25) was found to be a selective MAGL inhibitor (IC50 = 9.4 nm), with an IC50 value above 50 µm against FAAH. In the formalin-induced nociception test, compound 25 showed a dose-dependent reduction of pain response in both acute and late phases. At 30 mg/kg dose, it significantly reduced the pain response and showed greater potency than the reference drug gabapentin (GBP).
Collapse
Affiliation(s)
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Quamrul Hassan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| |
Collapse
|
25
|
Zhi Z, Zhang W, Yao J, Shang Y, Hao Q, Liu Z, Ren Y, Li J, Zhang G, Wang J. Discovery of Aryl Formyl Piperidine Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase Inhibitors. J Med Chem 2020; 63:5783-5796. [DOI: 10.1021/acs.jmedchem.9b02137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuoer Zhi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenting Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingchun Yao
- Lunan Pharmaceutical Group Corporation, Linyi, Shandong 276006, China
| | - Yanguo Shang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingjing Hao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhong Liu
- Lunan Pharmaceutical Group Corporation, Linyi, Shandong 276006, China
| | - Yushan Ren
- Lunan Pharmaceutical Group Corporation, Linyi, Shandong 276006, China
| | - Jie Li
- Lunan Pharmaceutical Group Corporation, Linyi, Shandong 276006, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Corporation, Linyi, Shandong 276006, China
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
26
|
Dahabiyeh LA, Abu-Rish EY, Taha MO. Inhibition of monoglyceride lipase by proton pump inhibitors: investigation using docking and in vitro experiments. Pharmacol Rep 2020; 72:435-442. [PMID: 32048247 DOI: 10.1007/s43440-019-00013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Currently, there is overwhelming evidence linking elevated plasma free fatty acids with insulin resistance and inflammation. Monoglyceride lipase (MGL) plays a crucial metabolic role in lipolysis by mediating the release of fatty acids. Therefore, inhibiting MGL should be a promising pharmacological approach for treating type 2 diabetes and inflammatory disorders. Proton pump inhibitors (PPIs) have been reported to improve glycemic control in type 2 diabetes albeit via largely unknown mechanism. METHODS The anti-MGL bioactivities of three PPIs, namely, lansoprazole, rabeprazole, and pantoprazole, were investigated using docking experiments and in vitro bioassay. RESULTS The three PPIs inhibited MGL in low micromolar range with rabeprazole exhibiting the best IC50 at 4.2 µM. Docking experiments showed several binding interactions anchoring PPIs within MGL catalytic site. CONCLUSION Our study provides evidence for a new mechanism by which PPIs improve insulin sensitivity independent of serum gastrin. The three PPIs effectively inhibit MGL and, therefore, serve as promising leads for the development of new clinical MGL inhibitors.
Collapse
Affiliation(s)
- Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Queen Rania St, Amman, 11942, Jordan.
| | - Eman Y Abu-Rish
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Queen Rania St, Amman, 11942, Jordan.
| |
Collapse
|
27
|
Li PY, Zhang YQ, Zhang Y, Jiang WX, Wang YJ, Zhang YS, Sun ZZ, Li CY, Zhang YZ, Shi M, Song XY, Zhao LS, Chen XL. Study on a Novel Cold-Active and Halotolerant Monoacylglycerol Lipase Widespread in Marine Bacteria Reveals a New Group of Bacterial Monoacylglycerol Lipases Containing Unusual C(A/S)HSMG Catalytic Motifs. Front Microbiol 2020; 11:9. [PMID: 32038595 PMCID: PMC6989442 DOI: 10.3389/fmicb.2020.00009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023] Open
Abstract
Monoacylglycerol lipases (MGLs) are present in all domains of life. However, reports on bacterial MGLs are still limited. Until now, reported bacterial MGLs are all thermophilic/mesophilic enzymes from warm terrestrial environments or deep-sea hydrothermal vent, and none of them originates from marine environments vastly subject to low temperature, high salts, and oligotrophy. Here, we characterized a novel MGL, GnMgl, from the marine cold-adapted and halophilic bacterium Glaciecola nitratireducens FR1064T. GnMgl shares quite low sequence similarities with characterized MGLs (lower than 31%). GnMgl and most of its bacterial homologs harbor a catalytic Ser residue located in the conserved C(A/S)HSMG motif rather than in the typical GxSxG motif reported on other MGLs, suggesting that GnMgl-like enzymes might be different from reported MGLs in catalysis. Phylogenetic analysis suggested that GnMgl and its bacterial homologs are clustered as a separate group in the monoglyceridelipase_lysophospholipase family of the Hydrolase_4 superfamily. Recombinant GnMgl has no lysophospholipase activity but could hydrolyze saturated (C12:0-C16:0) and unsaturated (C18:1 and C18:2) MGs and short-chain triacylglycerols, displaying distinct substrate selectivity from those of reported bacterial MGLs. The substrate preference of GnMgl, predicted to be a membrane protein, correlates to the most abundant fatty acids within the strain FR1064T, suggesting the role of GnMgl in the lipid catabolism in this marine bacterium. In addition, different from known bacterial MGLs that are all thermostable enzymes, GnMgl is a cold-adapted enzyme, with the maximum activity at 30°C and retaining 30% activity at 0°C. GnMgl is also a halotolerant enzyme with full activity in 3.5M NaCl. The cold-adapted and salt-tolerant characteristics of GnMgl may help its source strain FR1064T adapt to the cold and saline marine environment. Moreover, homologs to GnMgl are found to be abundant in various marine bacteria, implying their important physiological role in these marine bacteria. Our results on GnMgl shed light on marine MGLs.
Collapse
Affiliation(s)
- Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan-Qi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Long-Sheng Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
28
|
Castelli R, Scalvini L, Vacondio F, Lodola A, Anselmi M, Vezzosi S, Carmi C, Bassi M, Ferlenghi F, Rivara S, Møller IR, Rand KD, Daglian J, Wei D, Dotsey EY, Ahmed F, Jung KM, Stella N, Singh S, Mor M, Piomelli D. Benzisothiazolinone Derivatives as Potent Allosteric Monoacylglycerol Lipase Inhibitors That Functionally Mimic Sulfenylation of Regulatory Cysteines. J Med Chem 2019; 63:1261-1280. [PMID: 31714779 DOI: 10.1021/acs.jmedchem.9b01679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe a set of benzisothiazolinone (BTZ) derivatives that are potent inhibitors of monoacylglycerol lipase (MGL), the primary degrading enzyme for the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). Structure-activity relationship studies evaluated various substitutions on the nitrogen atom and the benzene ring of the BTZ nucleus. Optimized derivatives with nanomolar potency allowed us to investigate the mechanism of MGL inhibition. Site-directed mutagenesis and mass spectrometry experiments showed that BTZs interact in a covalent reversible manner with regulatory cysteines, Cys201 and Cys208, causing a reversible sulfenylation known to modulate MGL activity. Metadynamics simulations revealed that BTZ adducts favor a closed conformation of MGL that occludes substrate recruitment. The BTZ derivative 13 protected neuronal cells from oxidative stimuli and increased 2-AG levels in the mouse brain. The results identify Cys201 and Cys208 as key regulators of MGL function and point to the BTZ scaffold as a useful starting point for the discovery of allosteric MGL inhibitors.
Collapse
Affiliation(s)
- Riccardo Castelli
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Federica Vacondio
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Mattia Anselmi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Stefano Vezzosi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Caterina Carmi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Michele Bassi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | - Ingvar R Møller
- Department of Pharmacy , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Kasper D Rand
- Department of Pharmacy , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | | | | | | | | | | | - Nephi Stella
- Department of Pharmacology, Psychiatry and Behavioral Sciences , University of Washington , Seattle , Washington 98195-7280 , United States
| | - Simar Singh
- Department of Pharmacology, Psychiatry and Behavioral Sciences , University of Washington , Seattle , Washington 98195-7280 , United States
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università degli Studi di Parma , Parco Area delle Scienze 27/A , I-43124 Parma , Italy.,Centro Interdipartimentale Biopharmanet-tec , Università degli Studi di Parma, Parco Area delle Scienze , Tecnopolo Padiglione 33 , I-43124 Parma , Italy
| | | |
Collapse
|
29
|
Grimsey NL, Savinainen JR, Attili B, Ahamed M. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: new developments in therapeutic and PET imaging applications. Drug Discov Today 2019; 25:330-343. [PMID: 31622747 DOI: 10.1016/j.drudis.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a major endocannabinoid hydrolyzing enzyme and can be regulated to control endogenous lipid levels in the brain. This review highlights the pharmacological roles and in vivo PET imaging of MAGL in brain.
Collapse
Affiliation(s)
- Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Juha R Savinainen
- Institute of Biomedicine, Faculty of Health Sciences, The University of Eastern Finland, Finland
| | - Bala Attili
- Department of Radiology, The University of Cambridge, UK
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Australia.
| |
Collapse
|
30
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
31
|
Li X, Gao S, Li W, Liu Z, Shi Z, Qiu C, Jiang J. Effect of monoacylglycerol lipase on the tumor growth in endometrial cancer. J Obstet Gynaecol Res 2019; 45:2043-2054. [PMID: 31357249 PMCID: PMC6790660 DOI: 10.1111/jog.14070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Aim Abnormal lipid metabolism plays a dual role in tumorigenesis, specifically in the occurrence and development of cancers. Monoacylglycerol lipase (MAGL), a hydrolase that is important for lipid metabolism, plays a vital role in different aspects of tumorigenesis. Many studies have shown that MAGL is highly elevated in a variety of cancers and plays an active role. However, its potential role in supporting endometrial cancer (EC) growth and progression has not yet been explored in depth. Methods Immunohistochemistry and quantitative real‐time reverse transcription polymerase chain reaction were performed to estimate the protein and messenger RNA (mRNA) levels of MAGL in tumor tissues. Then, JZL184 and small interfering RNA (siRNA) were used to decrease the expression of MAGL in EC cells. The gene and protein expression levels of MAGL were measured using quantitative real‐time PCR and western blotting, respectively. Additionally, the effect of MAGL on tumor growth in EC was detected by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide , cell cycle and western blotting assay in vitro. Results We found that MAGL was overexpressed in EC and was significantly correlated with surgical‐pathological stage, myometrial invasion, number of pregnancies and body mass index. The growth and cell cycle progression of tumor cells were significantly impaired in vitro by the pharmacological and siRNA‐mediated MAGL inhibition. In addition, MAGL inhibition seemed to repress two target genes, Cyclin D1 and Bcl‐2. Conclusion In summary, we have demonstrated that MAGL is involved in EC growth and progression. Our results suggest that targeting MAGL may be a novel and valid treatment for EC.
Collapse
Affiliation(s)
- Xin Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Shuhong Gao
- Department of Obstetrics and Gynecology, Binzhou Medical University Hospital, Binzhou, China
| | - Wenzhi Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhiming Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhengzheng Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| | - Jie Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
32
|
Contarini G, Ferretti V, Papaleo F. Acute Administration of URB597 Fatty Acid Amide Hydrolase Inhibitor Prevents Attentional Impairments by Distractors in Adolescent Mice. Front Pharmacol 2019; 10:787. [PMID: 31379568 PMCID: PMC6658611 DOI: 10.3389/fphar.2019.00787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
The maturation of attentional control during adolescence might influence later functional outcome or predisposition to psychiatric disorders. During adolescence, the cannabinoid system is particularly sensitive to pharmacological challenges, with potential impact on cognitive functions. Here, we used a recently validated five-choice serial reaction time task protocol to test adolescent C57BL/6J mice. We showed that the pharmacological inhibition (by URB597) of the fatty acid amide hydrolase (FAAH), the major enzyme implicated in anandamide degradation, prevented cognitive disruptions induced by distracting cues in adolescent mice. In particular, these protective effects were indicated by increased accuracy and correct responses and decreased premature responses selectively in the distractor trials. Notably, at the relatively low dose used, we detected no effects in other cognitive, motor, or incentive measures nor long-lasting or rebound effects of FAAH inhibition in cognitive functions. Overall, these data provide initial evidence of selective procognitive effects of FAAH inhibition in measures of attentional control in adolescent mice.
Collapse
Affiliation(s)
- Gabriella Contarini
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Valentina Ferretti
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
33
|
Dahabiyeh LA, Bustanji Y, Taha MO. The herbicide quinclorac as potent lipase inhibitor: Discovery via virtual screening and in vitro/in vivo validation. Chem Biol Drug Des 2019; 93:787-797. [PMID: 30570819 DOI: 10.1111/cbdd.13463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
Lipolysis is primarily controlled by the stepwise action of hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL) to release free fatty acids and glycerol. A high level of circulating free fatty acids is well-known to mediate insulin resistance. Thus, the need to discover lipase inhibitors against both enzyme systems remains urgent. Agrochemicals are tightly regulated chemicals and therefore are potential source of new medicinal agents. Accordingly, we implemented a computational workflow to search for new lipase inhibitory leads by virtually screening commercial agrochemicals against HSL and MGL employing binding pharmacophores and docking experiments. Ten agrochemicals were identified as potential lipase inhibitors, out of which quinclorac, a safe herbicide, achieved high-ranking score. Subsequent in vitro evaluation against rat epididymal lipase activity showed quinclorac to exhibit nanomolar anti-lipase IC50 . Subsequent in vivo testing showed quinclorac to significantly decrease blood glycerol levels after acute exposure (150 mg/kg) and multiple dosing (50 or 25 mg/kg) (p < 0.05).
Collapse
Affiliation(s)
- Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Yasser Bustanji
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
34
|
Poli G, Lapillo M, Jha V, Mouawad N, Caligiuri I, Macchia M, Minutolo F, Rizzolio F, Tuccinardi T, Granchi C. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J Enzyme Inhib Med Chem 2019; 34:589-596. [PMID: 30696302 PMCID: PMC6352951 DOI: 10.1080/14756366.2019.1571271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) is an attractive therapeutic target for many pathologies, including neurodegenerative diseases, cancer as well as chronic pain and inflammatory pathologies. The identification of reversible MAGL inhibitors, devoid of the side effects associated to prolonged MAGL inactivation, is a hot topic in medicinal chemistry. In this study, a novel phenyl(piperazin-1-yl)methanone inhibitor of MAGL was identified through a virtual screening protocol based on a fingerprint-driven consensus docking (CD) approach. Molecular modeling and preliminary structure-based hit optimization studies allowed the discovery of derivative 4, which showed an efficient reversible MAGL inhibition (IC50 = 6.1 µM) and a promising antiproliferative activity on breast and ovarian cancer cell lines (IC50 of 31-72 µM), thus representing a lead for the development of new and more potent reversible MAGL inhibitors. Moreover, the obtained results confirmed the reliability of the fingerprint-driven CD approach herein developed.
Collapse
Affiliation(s)
- Giulio Poli
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | - Vibhu Jha
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | - Nayla Mouawad
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy
| | - Isabella Caligiuri
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy
| | - Marco Macchia
- a Department of Pharmacy , University of Pisa , Pisa , Italy
| | | | - Flavio Rizzolio
- b Pathology Unit, Department of Molecular Biology and Translational Research , National Cancer Institute and Center for Molecular Biomedicine , Aviano , Italy.,c Department of Molecular Science and Nanosystems , Ca' Foscari Università di Venezia , Venezia , Italy
| | | | - Carlotta Granchi
- a Department of Pharmacy , University of Pisa , Pisa , Italy.,d Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| |
Collapse
|
35
|
Granchi C, Lapillo M, Glasmacher S, Bononi G, Licari C, Poli G, el Boustani M, Caligiuri I, Rizzolio F, Gertsch J, Macchia M, Minutolo F, Tuccinardi T, Chicca A. Optimization of a Benzoylpiperidine Class Identifies a Highly Potent and Selective Reversible Monoacylglycerol Lipase (MAGL) Inhibitor. J Med Chem 2019; 62:1932-1958. [DOI: 10.1021/acs.jmedchem.8b01483] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Margherita Lapillo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Cristina Licari
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maguie el Boustani
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, 34100 Trieste, Italy
| | - Isabella Caligiuri
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
| | - Flavio Rizzolio
- Pathology Unit, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, 33081 Aviano, Pordenone, Italy
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University, 30123 Venezia, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
36
|
Bononi G, Granchi C, Lapillo M, Giannotti M, Nieri D, Fortunato S, Boustani ME, Caligiuri I, Poli G, Carlson KE, Kim SH, Macchia M, Martinelli A, Rizzolio F, Chicca A, Katzenellenbogen JA, Minutolo F, Tuccinardi T. Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. Eur J Med Chem 2018; 157:817-836. [DOI: 10.1016/j.ejmech.2018.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023]
|
37
|
Gil-Ordóñez A, Martín-Fontecha M, Ortega-Gutiérrez S, López-Rodríguez ML. Monoacylglycerol lipase (MAGL) as a promising therapeutic target. Biochem Pharmacol 2018; 157:18-32. [PMID: 30059673 DOI: 10.1016/j.bcp.2018.07.036] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Monoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools. In this review we report the advances made in the field with a special focus on the last decade and how MAGL has become a promising therapeutic target for the treatment of several diseases that currently lack appropriate therapies.
Collapse
Affiliation(s)
- Ana Gil-Ordóñez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Mar Martín-Fontecha
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - Silvia Ortega-Gutiérrez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain
| | - María L López-Rodríguez
- Department of Organic Chemistry, School of Chemistry, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain.
| |
Collapse
|
38
|
Aschauer P, Zimmermann R, Breinbauer R, Pavkov-Keller T, Oberer M. The crystal structure of monoacylglycerol lipase from M. tuberculosis reveals the basis for specific inhibition. Sci Rep 2018; 8:8948. [PMID: 29895832 PMCID: PMC5997763 DOI: 10.1038/s41598-018-27051-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/25/2018] [Indexed: 01/20/2023] Open
Abstract
Monoacylglycerol lipases (MGLs) are enzymes that hydrolyze monoacylglycerol into a free fatty acid and glycerol. Fatty acids can be used for triacylglycerol synthesis, as energy source, as building blocks for energy storage, and as precursor for membrane phospholipids. In Mycobacterium tuberculosis, fatty acids also serve as precursor for polyketide lipids like mycolic acids, major components of the cellular envelope associated to resistance for drug. We present the crystal structure of the MGL Rv0183 from Mycobacterium tuberculosis (mtbMGL) in open conformation. The structure reveals remarkable similarities with MGL from humans (hMGL) in both, the cap region and the α/β core. Nevertheless, mtbMGL could not be inhibited with JZL-184, a known inhibitor of hMGL. Docking studies provide an explanation why the activity of mtbMGL was not affected by the inhibitor. Our findings suggest that specific inhibition of mtbMGL from Mycobacterium tuberculosis, one of the oldest recognized pathogens, is possible without influencing hMGL.
Collapse
Affiliation(s)
- Philipp Aschauer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Rolf Breinbauer
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
- Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010, Graz, Austria.
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| |
Collapse
|
39
|
Hao X, Yuan J, Xu Y, Wang Z, Hou J, Hu T. In vitro inhibitory effects of pristimerin on human liver cytochrome P450 enzymes. Xenobiotica 2018; 48:1185-1191. [PMID: 28385095 DOI: 10.1080/00498254.2017.1316886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1.Pristimerin (PTM) is a biological component isolated from Chinese herbal plant Celastrus and Maytenus spp. and it possesses numerous pharmacological activities. However, whether PTM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. 2.In this study, the inhibitory effects of PTM on the eight human liver CYP isoforms (i.e. 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19 and 2C8) were investigated in vitro using human liver microsomes (HLMs). 3.The results showed that PTM inhibited the activity of CYP1A2, 3A4 and 2C9, with IC 50 values of 21.74, 15.88 and 16.58 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that PTM was not only a non-competitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP1A2 and 2C9, with Ki values of 7.33, 11.60 and 8.09 μM, respectively. In addition, PTM is a time-dependent inhibitor for CYP3A4 with Kinact /KI value of 0.049/11.62 μM-1 min-1. 4.The in vitro studies of PTM with CYP isoforms indicate that PTM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, 3A4 and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.
Collapse
Affiliation(s)
- Xiaoyi Hao
- a Cangzhou People's Hospital , Cangzhou , China
| | | | - Yansen Xu
- a Cangzhou People's Hospital , Cangzhou , China
| | - Zhao Wang
- a Cangzhou People's Hospital , Cangzhou , China
| | | | - Tao Hu
- a Cangzhou People's Hospital , Cangzhou , China
| |
Collapse
|
40
|
Granchi C, Rizzolio F, Caligiuri I, Macchia M, Martinelli A, Minutolo F, Tuccinardi T. Rational Development of MAGL Inhibitors. Methods Mol Biol 2018; 1824:335-346. [PMID: 30039417 DOI: 10.1007/978-1-4939-8630-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hit identification and hit-to-lead optimization are key steps of the early drug discovery program. Starting from the X-ray crystal structure of the human monoacylglycerol lipase (hMAGL), we herein describe the computational and experimental procedures that we applied for identifying and optimizing a new active inhibitor of this target enzyme. A receptor-based virtual screening method is reported in details, together with enzymatic assays and a first round of hit optimization.
Collapse
Affiliation(s)
| | - Flavio Rizzolio
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS, Pordenone, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari Università di Venezia, Venezia-Mestre, Italy
| | - Isabella Caligiuri
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS, Pordenone, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
41
|
Martínez-Gardeazabal J, González de San Román E, Moreno-Rodríguez M, Llorente-Ovejero A, Manuel I, Rodríguez-Puertas R. Lipid mapping of the rat brain for models of disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1548-1557. [PMID: 28235468 DOI: 10.1016/j.bbamem.2017.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 11/19/2022]
Abstract
Lipids not only constitute the primary component of cellular membranes and contribute to metabolism but also serve as intracellular signaling molecules and bind to specific membrane receptors to control cell proliferation, growth and convey neuroprotection. Over the last several decades, the development of new analytical techniques, such as imaging mass spectrometry (IMS), has contributed to our understanding of their involvement in physiological and pathological conditions. IMS allows researchers to obtain a wide range of information about the spatial distribution and abundance of the different lipid molecules that is crucial to understand brain functions. The primary aim of this study was to map the spatial distribution of different lipid species in the rat central nervous system (CNS) using IMS to find a possible relationship between anatomical localization and physiology. The data obtained were subsequently applied to a model of neurological disease, the 192IgG-saporin lesion model of memory impairment. The results were obtained using a LTQ-Orbitrap XL mass spectrometer in positive and negative ionization modes and analyzed by ImageQuest and MSIReader software. A total of 176 different molecules were recorded based on the specific localization of their intensities. However, only 34 lipid species in negative mode and 51 in positive were assigned to known molecules with an error of 5ppm. These molecules were grouped by different lipid families, resulting in: Phosphatidylcholines (PC): PC (34: 1)+K+ and PC (32: 0)+K+ distributed primarily in gray matter, and PC (36: 1)+K+ and PC (38: 1)+Na+ distributed in white matter. Phosphatidic acid (PA): PA (38: 3)+K+ in white matter, and PA (38: 5)+K+ in gray matter and brain ventricles. Phosphoinositol (PI): PI (18: 0/20: 4)-H+ in gray matter, and PI (O-30: 1) or PI (P-30: 0)-H+ in white matter. Phosphatidylserines (PS): PS (34: 1)-H+ in gray matter, and PS (38: 1)-H+ in white matter. Sphingomyelin (SM) SM (d18: 1/16: 0)-H+ in ventricles and SM (d18: 1/18: 0)-H+ in gray matter. Sulfatides (ST): ST (d18: 1/24: 1)-H+ in white matter. The specific distribution of different lipids supports their involvement not only in structural and metabolic functions but also as intracellular effectors or specific receptor ligands and/or precursors. Moreover, the specific localization in the CNS described here will enable us to analyze lipid distribution to identify their physiological conditions in rat models of neurodegenerative pathologies, such as Alzheimer's disease. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- J Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - E González de San Román
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - M Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - A Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - I Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - R Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
42
|
Grabner GF, Zimmermann R, Schicho R, Taschler U. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling. Pharmacol Ther 2017; 175:35-46. [PMID: 28213089 DOI: 10.1016/j.pharmthera.2017.02.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
43
|
Granchi C, Rizzolio F, Palazzolo S, Carmignani S, Macchia M, Saccomanni G, Manera C, Martinelli A, Minutolo F, Tuccinardi T. Structural Optimization of 4-Chlorobenzoylpiperidine Derivatives for the Development of Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. J Med Chem 2016; 59:10299-10314. [PMID: 27809504 DOI: 10.1021/acs.jmedchem.6b01459] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monoacylglycerol lipase (MAGL) inhibitors are considered potential therapeutic agents for a variety of pathological conditions, including several types of cancer. Many MAGL inhibitors are reported in literature; however, most of them showed an irreversible mechanism of action, which caused important side effects. The use of reversible MAGL inhibitors has been only partially investigated so far, mainly because of the lack of compounds with good MAGL reversible inhibition properties. In this study, starting from the (4-(4-chlorobenzoyl)piperidin-1-yl)(4-methoxyphenyl)methanone (CL6a) lead compound that showed a reversible mechanism of MAGL inhibition (Ki = 8.6 μM), we started its structural optimization and we developed a new potent and selective MAGL inhibitor (17b, Ki = 0.65 μM). Furthermore, modeling studies suggested that the binding interactions of this compound replace a structural water molecule reproducing its H-bonds in the MAGL binding site, thus identifying a new key anchoring point for the development of new MAGL inhibitors.
Collapse
Affiliation(s)
- Carlotta Granchi
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Flavio Rizzolio
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS , 33081 Aviano, Pordenone, Italy
| | - Stefano Palazzolo
- Division of Experimental and Clinical Pharmacology, Department of Molecular Biology and Translational Research, National Cancer Institute and Center for Molecular Biomedicine, IRCCS , 33081 Aviano, Pordenone, Italy.,Graduate School in Nanotechnology, University of Trieste , 34127 Trieste, Italy
| | - Sara Carmignani
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Giuseppe Saccomanni
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Clementina Manera
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Adriano Martinelli
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa , Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
44
|
Scalvini L, Vacondio F, Bassi M, Pala D, Lodola A, Rivara S, Jung KM, Piomelli D, Mor M. Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL. Sci Rep 2016; 6:31046. [PMID: 27499063 PMCID: PMC4976315 DOI: 10.1038/srep31046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022] Open
Abstract
The function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favour closed conformations of the enzyme that do not permit the entry of substrate into the active site.
Collapse
Affiliation(s)
- Laura Scalvini
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Michele Bassi
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Daniele Pala
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, United States
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, United States.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, United States.,Unit of Drug Discovery and Development, Istituto Italiano di Tecnologia, I-16163, Genova, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, I-43124 Parma, Italy
| |
Collapse
|
45
|
Li CF, Chuang IC, Liu TT, Chen KC, Chen YY, Fang FM, Li SH, Chen TJ, Yu SC, Lan J, Huang HY. Transcriptomic reappraisal identifies MGLL overexpression as an unfavorable prognosticator in primary gastrointestinal stromal tumors. Oncotarget 2016; 7:49986-49997. [PMID: 27366945 PMCID: PMC5226563 DOI: 10.18632/oncotarget.10304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/13/2016] [Indexed: 01/09/2023] Open
Abstract
The role of deregulated cellular metabolism, particularly lipid metabolism, in gastrointestinal stromal tumors (GISTs) remains unclear. Through data mining of published transcriptomes, we examined lipid metabolism-regulating drivers differentially upregulated in high-risk cases and identified monoglyceride lipase (MGLL) as the top-ranking candidate involved in GIST progression. MGLL expression status was examined in three GIST cell lines and two independent sets of primary localized GISTs. MGLL mRNA abundance and immunoexpression was determined in 70 cases through the QuantiGene assay and H-scoring on whole sections, respectively. H-scoring was extended to another cohort for evaluating MGLL immunoexpression on tissue microarrays, yielding 350 informative cases, with KIT/PDGFRA mutation genotypes noted in 213 of them. Both imatinib-sensitive (GIST882) and -resistant (GIST48 and GIST430) cell lines exhibited increased MGLL expression. MGLL mRNA levels significantly increased from adjacent normal tissue to the non-high-risk group (p = 0.030) and from the non-high-risk group to high-risk GISTs (p = 0.012), and were associated with immunoexpression levels (p < 0.001, r = 0.536). MGLL overexpression was associated with the nongastric location (p = 0.022) and increased size (p = 0.017), and was strongly related to mitosis and risk levels defined by NIH and NCCN criteria (all p ≤ 0.001). Univariately, MGLL overexpression was strongly predictive of poorer disease-free and overall survival (both p < 0.001), which remained prognostically independent for both endpoints, along with higher risk levels. Conclusively, MGLL is a lipid metabolic enzyme causatively implicated in GIST progression given its association with unfavorable clincopathological factors and independent negative prognostic effects.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - I-Chieh Chuang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ko-Chin Chen
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Yen-Yang Chen
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Bone and Soft Tissue Study Group, Taiwan Society of Pathology, Taiwan
| |
Collapse
|
46
|
Shen WJ, Azhar S, Kraemer FB. Lipid droplets and steroidogenic cells. Exp Cell Res 2015; 340:209-14. [PMID: 26639173 DOI: 10.1016/j.yexcr.2015.11.024] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023]
Abstract
Lipid droplets (LDs) in steroidogenic tissues have a cholesteryl ester (CE) core surrounded by a phospholipid monolayer that is coated with associated proteins. Compared with other tissues, they tend to be smaller in size and more numerous in numbers. These LDs are enriched with PLIN1c, PLIN2 and PLIN3. Both CIDE A and B are found in mouse ovary. Free cholesterol (FC) released upon hormone stimulation from LDs is the preferred source of cholesterol substrate for steroidogenesis, and HSL is the major neutral cholesterol esterase mediating the conversion of CEs to FC. Through the interaction of HSL with vimentin and StAR, FC is translocated to mitochondria for steroid hormone production. Proteomic analyses of LDs isolated from loaded primary ovarian granulosa cells, mouse MLTC-1 Leydig tumor cells and mouse testes revealed LD associated proteins that are actively involved in modulating lipid homeostasis along with a number of steroidogenic enzymes. Microscopy analysis confirmed the localization of many of these proteins to LDs. These studies broaden the role of LDs to include being a platform for functional steroidogenic enzyme activity or as a port for transferring steroidogenic enzymes and/or steroid intermediates, in addition to being a storage depot for CEs.
Collapse
Affiliation(s)
- Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States.
| |
Collapse
|
47
|
Dong C, Xu C, Liu H, Xu S, Gao Y, Peng J. Absorption and metabolism characteristics of pristimerin as determined by a sensitive and reliable LC–MS/MS method. Fitoterapia 2015; 106:62-7. [DOI: 10.1016/j.fitote.2015.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/30/2023]
|