1
|
Khan R, Oskouian B, Lee JY, Hodgin JB, Yang Y, Tassew G, Saba JD. AAV-SPL 2.0, a Modified Adeno-Associated Virus Gene Therapy Agent for the Treatment of Sphingosine Phosphate Lyase Insufficiency Syndrome. Int J Mol Sci 2023; 24:15560. [PMID: 37958544 PMCID: PMC10648410 DOI: 10.3390/ijms242115560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.
Collapse
Affiliation(s)
- Ranjha Khan
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Babak Oskouian
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Joanna Y Lee
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gizachew Tassew
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| | - Julie D Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Zhao P, Tassew GB, Lee JY, Oskouian B, Muñoz DP, Hodgin JB, Watson GL, Tang F, Wang JY, Luo J, Yang Y, King S, Krauss RM, Keller N, Saba JD. Efficacy of AAV9-mediated SGPL1 gene transfer in a mouse model of S1P lyase insufficiency syndrome. JCI Insight 2021; 6:145936. [PMID: 33755599 PMCID: PMC8119223 DOI: 10.1172/jci.insight.145936] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is a rare metabolic disorder caused by inactivating mutations in sphingosine-1-phosphate lyase 1 (SGPL1), which is required for the final step of sphingolipid metabolism. SPLIS features include steroid-resistant nephrotic syndrome and impairment of neurological, endocrine, and hematopoietic systems. Many affected individuals die within the first 2 years. No targeted therapy for SPLIS is available. We hypothesized that SGPL1 gene replacement would address the root cause of SPLIS, thereby serving as a universal treatment for the condition. As proof of concept, we evaluated the efficacy of adeno-associated virus 9–mediated transfer of human SGPL1 (AAV-SPL) given to newborn Sgpl1-KO mice that model SPLIS and die in the first weeks of life. Treatment dramatically prolonged survival and prevented nephrosis, neurodevelopmental delay, anemia, and hypercholesterolemia. STAT3 pathway activation and elevated proinflammatory and profibrogenic cytokines observed in KO kidneys were attenuated by treatment. Plasma and tissue sphingolipids were reduced in treated compared with untreated KO pups. SGPL1 expression and activity were measurable for at least 40 weeks. In summary, early AAV-SPL treatment prevents nephrosis, lipidosis, and neurological impairment in a mouse model of SPLIS. Our results suggest that SGPL1 gene replacement holds promise as a durable and universal targeted treatment for SPLIS.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, UCSF, San Francisco, California, USA.,Cure Genetics, Suzhou, China
| | | | - Joanna Y Lee
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Babak Oskouian
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Denise P Muñoz
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gordon L Watson
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Felicia Tang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jen-Yeu Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jinghui Luo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yingbao Yang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah King
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Ronald M Krauss
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nancy Keller
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Julie D Saba
- Department of Pediatrics, UCSF, San Francisco, California, USA
| |
Collapse
|
3
|
Zhao P, Liu ID, Hodgin JB, Benke PI, Selva J, Torta F, Wenk MR, Endrizzi JA, West O, Ou W, Tang E, Goh DLM, Tay SKH, Yap HK, Loh A, Weaver N, Sullivan B, Larson A, Cooper MA, Alhasan K, Alangari AA, Salim S, Gumus E, Chen K, Zenker M, Hildebrandt F, Saba JD. Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation. J Inherit Metab Dis 2020; 43:1131-1142. [PMID: 32233035 PMCID: PMC8072405 DOI: 10.1002/jimd.12238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.
Collapse
Affiliation(s)
- Piming Zhao
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Isaac D. Liu
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Jeffrey B. Hodgin
- Department of Pathology, University of Michigan Hospitals and Health Center, Ann Arbor, Michigan
| | - Peter I. Benke
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jeremy Selva
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Federico Torta
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Markus R. Wenk
- SLING, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - James A. Endrizzi
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Olivia West
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Weixing Ou
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Emily Tang
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| | - Denise Li-Meng Goh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Stacey Kiat-Hong Tay
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hui-Kim Yap
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Alwin Loh
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Nicole Weaver
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Bonnie Sullivan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Clinical Genetics, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Austin Larson
- Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - Megan A. Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Khalid Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alangari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Suha Salim
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Evren Gumus
- Department of Medicine, Harran University, Sanliurfa, Turkey
| | - Karin Chen
- Department of Pediatrics, Division of Allergy and Immunology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Martin Zenker
- Institute of Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | | | - Julie D. Saba
- Department of Pediatrics, Division of Hematology/Oncology, University of California, San Francisco, California
| |
Collapse
|
4
|
Lovric S, Goncalves S, Gee HY, Oskouian B, Srinivas H, Choi WI, Shril S, Ashraf S, Tan W, Rao J, Airik M, Schapiro D, Braun DA, Sadowski CE, Widmeier E, Jobst-Schwan T, Schmidt JM, Girik V, Capitani G, Suh JH, Lachaussée N, Arrondel C, Patat J, Gribouval O, Furlano M, Boyer O, Schmitt A, Vuiblet V, Hashmi S, Wilcken R, Bernier FP, Innes AM, Parboosingh JS, Lamont RE, Midgley JP, Wright N, Majewski J, Zenker M, Schaefer F, Kuss N, Greil J, Giese T, Schwarz K, Catheline V, Schanze D, Franke I, Sznajer Y, Truant AS, Adams B, Désir J, Biemann R, Pei Y, Ars E, Lloberas N, Madrid A, Dharnidharka VR, Connolly AM, Willing MC, Cooper MA, Lifton RP, Simons M, Riezman H, Antignac C, Saba JD, Hildebrandt F. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest 2017; 127:912-928. [PMID: 28165339 DOI: 10.1172/jci89626] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.
Collapse
|
5
|
McLean CJ, Marles-Wright J, Custodio R, Lowther J, Kennedy AJ, Pollock J, Clarke DJ, Brown AR, Campopiano DJ. Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei. J Lipid Res 2016; 58:137-150. [PMID: 27784725 PMCID: PMC5234717 DOI: 10.1194/jlr.m071258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/04/2016] [Indexed: 01/18/2023] Open
Abstract
Sphingolipids (SLs) are ubiquitous elements in eukaryotic membranes and are also found in some bacterial and viral species. As well as playing an integral structural role, SLs also act as potent signaling molecules involved in numerous cellular pathways and have been linked to many human diseases. A central SL signaling molecule is sphingosine-1-phosphate (S1P), whose breakdown is catalyzed by S1P lyase (S1PL), a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the cleavage of S1P to (2E)-hexadecenal (2E-HEX) and phosphoethanolamine. Here, we show that the pathogenic bacterium, Burkholderia pseudomallei K96243, encodes two homologous proteins (S1PL2021 and S1PL2025) that display moderate sequence identity to known eukaryotic and prokaryotic S1PLs. Using an established MS-based methodology, we show that recombinant S1PL2021 is catalytically active. We also used recombinant human fatty aldehyde dehydrogenase to develop a spectrophotometric enzyme-coupled assay to detect 2E-HEX formation and measure the kinetic constants of the two B. pseudomallei S1PL isoforms. Furthermore, we determined the X-ray crystal structure of the PLP-bound form of S1PL2021 at 2.1 Å resolution revealing that the enzyme displays a conserved structural fold and active site architecture comparable with known S1PLs. The combined data suggest that B. pseudomallei has the potential to degrade host SLs in a S1PL-dependent manner.
Collapse
Affiliation(s)
- Christopher J McLean
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Jon Marles-Wright
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Rafael Custodio
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Jonathan Lowther
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Amanda J Kennedy
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Jacob Pollock
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - David J Clarke
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Alan R Brown
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Dominic J Campopiano
- EastChem School of Chemistry University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
6
|
Shigeri Y, Kamimura T, Ando M, Uegaki K, Sato H, Tani F, Arakawa R, Kinumi T. 2-Hydrazinoquinoline: a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry to detect gaseous carbonyl compounds. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:83-90. [PMID: 27419901 DOI: 10.1255/ejms.1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sensitivity, range of applications, and reaction mechanism of 2-hydrazinoquinoline as a reactive matrix for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) were examined. Using a reaction chamber (125L) equipped with a stirring fan and a window for moving the MALDI-MS plate and volatile samples in and out, the sensitivities of 2-hydrazinoquinoline to gaseous aldehydes (formaldehyde, acetaldehyde, propionaldehyde, and n-butyraldehyde) and ketones (acetone, methyl ethyl ketone, and methyl isobutyl ketone) were determined to be at least parts per million (ppm) levels. On the other hand, carboxylic acids (formic acid, acetic acid, propionic acid, and butyric acid) and esters (ethyl acetate, pentyl acetate, isoamyl acetate, and methyl salicylate) could not be detected by 2-hydrazinoquinoline in MALDI-MS. In addition to 2,4-dinitrophenylhydrazine, a common derivatization reagent for analyzing carbonyl compounds quantitatively in gas chromatography and liquid chromatography, the dissolution of 2-hydrazinoquinoline in an acidic solution, such as trifluoroacetic acid, was essential for its function as a reactive matrix for MALDI- MS.
Collapse
Affiliation(s)
- Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Takuya Kamimura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Masanori Ando
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Koichi Uegaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Hiroaki Sato
- Department of Chemistry and Materials Engineering, Kansai University, Yamate-cho, Suita, Osaka, 564-8680, Japan. sato-
| | - Fumito Tani
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan.
| | - Ryuichi Arakawa
- Department of Chemistry and Materials Engineering, Kansai University, Yamate-cho, Suita, Osaka, 564-8680, Japan. arak@kansai- u.ac.jp
| | - Tomoya Kinumi
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 3, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan.
| |
Collapse
|