Sut TN, Tan SW, Jeon WY, Yoon BK, Cho NJ, Jackman JA. Streamlined Fabrication of Hybrid Lipid Bilayer Membranes on Titanium Oxide Surfaces: A Comparison of One- and Two-Tail SAM Molecules.
NANOMATERIALS 2022;
12:nano12071153. [PMID:
35407271 PMCID:
PMC9000636 DOI:
10.3390/nano12071153]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/26/2023]
Abstract
There is broad interest in fabricating cell-membrane-mimicking, hybrid lipid bilayer (HLB) coatings on titanium oxide surfaces for medical implant and drug delivery applications. However, existing fabrication strategies are complex, and there is an outstanding need to develop a streamlined method that can be performed quickly at room temperature. Towards this goal, herein, we characterized the room-temperature deposition kinetics and adlayer properties of one- and two-tail phosphonic acid-functionalized molecules on titanium oxide surfaces in various solvent systems and identified optimal conditions to prepare self-assembled monolayers (SAMs), upon which HLBs could be formed in select cases. Among the molecular candidates, we identified a two-tail molecule that formed a rigidly attached SAM to enable HLB fabrication via vesicle fusion for membrane-based biosensing applications. By contrast, vesicles adsorbed but did not rupture on SAMs composed of one-tail molecules. Our findings support that two-tail phosphonic acid SAMs offer superior capabilities for rapid HLB coating fabrication at room temperature, and these streamlined capabilities could be useful to prepare durable lipid bilayer coatings on titanium-based materials.
Collapse