1
|
Petrus R, Matuszak K, Kinzhybalo V. Synthesis of ω-Hydroxy Fatty Acid Alkyl Esters by Macrocyclic Lactones Alcoholysis Catalyzed by Homoleptic and Heteroleptic Zinc Aryloxides. Chem Asian J 2024; 19:e202400526. [PMID: 38924377 DOI: 10.1002/asia.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
A series of zinc aryloxides, [Zn4(sal-Me)8]⋅2.5(C7H8) (1), [Zn4(sal-Me)8]⋅CH2Cl2 (2), [Zn4(μ3-OR)2(sal-R)6] (3) (for R=Me (0.51), Et (0.49)), [Zn4(μ3-OMe)4(sal-Me)4(HOMe)4] (4), [Zn(sal-Me)2(py)2]⋅THF (5), {[Zn(sal-Me)2(tmbpy)] ⋅ 2(C6H5CH3)}n (6), [Zn2(sal-Me)2(THF)2Cl2] ⋅ 0.5(C6H5CH3) (7), and [Zn4(μ3-OMe)2(sal-Me)4Cl2] (8) (Hsal-Me=methyl salicylate, py=pyridine, tmbpy=4,4'-trimethylenedipyridine) were obtained that have different nuclearities and central core topologies and contain ligands of different basicity and coordination abilities.
Collapse
Affiliation(s)
- Rafał Petrus
- Faculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370, Wrocław, Poland
| | - Karolina Matuszak
- Faculty of Chemistry, Wrocław University of Science and Technology, 23 Smoluchowskiego, 50-370, Wrocław, Poland
| | - Vasyl Kinzhybalo
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, 50-422, Wrocław, Poland
| |
Collapse
|
2
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Badhe Y, Schmitt T, Gupta R, Rai B, Neubert RH. Investigating the nanostructure of a CER[NP]/CER[AP]-based stratum corneum lipid matrix model: A combined neutron diffraction & molecular dynamics simulations approach. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:184007. [PMID: 35863424 DOI: 10.1016/j.bbamem.2022.184007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
The human skin provides a physiochemical and biological protective barrier due to the unique structure of its outermost layer known as the Stratum corneum. This layer consists of corneocytes and a multi-lamellar lipid matrix forming a composite, which is a major determining factor for the barrier function of the Stratum corneum. A substantiated understanding of this barrier is necessary, as controlled breaching or modulation of the same is also essential for various health and personal care applications such as topical drug delivery and cosmetics to a name few. In this study, we discuss the state-of-the-art of neutron diffraction techniques, using specifically deuterated lipids, combined with the information obtained from molecular models using molecular dynamics simulations, to understand the structure and barrier function of the Stratum corneum lipid matrix. As an example, the effect of ceramide concentration on a lipid lamella system consisting of CER[NP]/CER[AP]/Cholesterol/free fatty acid (deprotonated) is studied. This study demonstrates the usefulness of the combined approach of neutron diffraction and molecular dynamics simulations for effective analysis of the model systems created for the Stratum corneum lipid matrix. The optimization of force fields by comparison with experimental data is furthermore an important step in the direction of providing a predictive quality.
Collapse
|
4
|
Ohnari H, Naru E, Ogura T, Sakata O, Obata Y. Phase Separation in Lipid Lamellae Result from Ceramide Conformations and Lateral Packing Structure. Chem Pharm Bull (Tokyo) 2021; 69:72-80. [PMID: 33390523 DOI: 10.1248/cpb.c20-00588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular lipids in the stratum corneum protect the living body from invasion by allergens and pathogens, and also suppresses water evaporation within the body. It is important to understand how differences in the microstructure of intercellular lipids arise. This microstructure is affected by lipid composition. Studies using intercellular lipid models have reported the formation of two phases with different short lamellar periodicities. However, the details of the packing structure characteristics of the two phases observed in these intercellular lipid models are unclear. Our previous report revealed that different short periodicity phases coexist in the N-(α-hydroxyoctadecanoyl)-dihydrosphingosine (CER[ADS]), cholesterol (CHOL), and palmitic acid (PA) complex model. In this study, the characteristics of the packing structure of two phases with different short lamellar periodicities, which were observed in the intercellular lipid model (CER[ADS]/CHOL/PA) that we used previously, were adjusted for models with different lipid compositions. The characteristics of the packed and lamellar structures have been determined by temperature-scanning small-angle X-ray scattering and wide-angle X-ray diffraction measurements simultaneously. These differences in lamellar structure were thought to be caused by differences in ceramides (CER) conformation between the hairpin and the V-shape type. The lamellar structure of the V-shaped CER conformation has a low orthorhombic ratio. The above results suggest that an increase in the ratio of CER with the V-shaped structure causes the lamellar structure to have low orthorhombic ratio, thereby contributing to a decrease in the bilayer's barrier function.
Collapse
Affiliation(s)
| | - Eiji Naru
- Research and Development Division, KOSE Corporation
| | - Taku Ogura
- Research Institute for Science & Technology, Tokyo University of Science
| | - Osamu Sakata
- Research and Development Division, KOSE Corporation
| | | |
Collapse
|
5
|
Kováčik A, Vogel A, Adler J, Pullmannová P, Vávrová K, Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1162-1170. [PMID: 29408487 DOI: 10.1016/j.bbamem.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 10/18/2022]
Abstract
In this work, we studied model stratum corneum lipid mixtures composed of the hydroxylated skin ceramides N-lignoceroyl 6-hydroxysphingosine (Cer[NH]) and α-hydroxylignoceroyl phytosphingosine (Cer[AP]). Two model skin lipid mixtures of the composition Cer[NH] or Cer[AP], N-lignoceroyl sphingosine (Cer[NS]), lignoceric acid (C24:0) and cholesterol in a 0.5:0.5:1:1 molar ratio were compared. Model membranes were investigated by differential scanning calorimetry and 2H solid-state NMR spectroscopy at temperatures from 25 °C to 80 °C. Each component of the model mixture was specifically deuterated for selective detection by 2H NMR. Thus, the exact phase composition of the mixture at varying temperatures could be quantified. Moreover, using X-ray powder diffraction we investigated the lamellar phase formation. From the solid-state NMR and DSC studies, we found that both hydroxylated Cer[NH] and Cer[AP] exhibit a similar phase behavior. At physiological skin temperature of 32 °C, the lipids form a crystalline (orthorhombic) phase. With increasing temperature, most of the lipids become fluid and form a liquid-crystalline phase, which converts to the isotropic phase at higher temperatures (65-80 °C). Interestingly, lignoceric acid in the Cer[NH]-containing mixture has a tendency to form two types of fluid phases at 65 °C. This tendency was also observed in Cer[AP]-containing membranes at 80 °C. While Cer[AP]-containing lipid models formed a short periodicity phase featuring a repeat spacing of d = 5.4 nm, in the Cer[NH]-based model skin lipid membranes, the formation of unusual long periodicity phase with a repeat spacing of d = 10.7 nm was observed.
Collapse
Affiliation(s)
- Andrej Kováčik
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Alexander Vogel
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
6
|
Schmitt T, Lange S, Sonnenberger S, Dobner B, Demé B, Neubert RHH, Gooris G, Bouwstra JA. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem Phys Lipids 2017; 209:29-36. [PMID: 29103906 DOI: 10.1016/j.chemphyslip.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
This study was able to investigate the different influence of the d- and l-ceramide [AP] on the lamellar as well as molecular nanostructure of stratum corneum simulating lipid model mixtures. In this case, neutron diffraction together with specifically deuterated ceramide was used as an effective tool to investigate the lamellar and the molecular nanostructure of the mixtures. It could clearly be demonstrated, that both isomers show distinctly different characteristics, even though the variation between both is only a single differently arranged OH-group. The l-ceramide [AP] promotes a crystalline like phase behaviour even if mixed with ceramide [NP], cholesterol and free fatty acids. The d-ceramide [AP] only shows crystalline-like features if mixed only with cholesterol and free fatty acids but adopts a native-like behaviour if additionally mixed with ceramide [NP]. It furthermore demonstrates that the l-ceramide [AP] should not be used for any applications concerning ceramide substitution. It could however possibly serve its own purpose, if this crystalline like behaviour has some kind of positive influence on the SC or can be utilized for any practical applications. The results obtained in this study demonstrate that the diastereomers of ceramide [AP] are an attractive target for further research because their influence on the lamellar as well as the nanostructure is exceptionally strong. Additionally, the results furthermore show a very strong influence on hydration of the model membrane. With these properties, the d-ceramide [AP] could be effectively used to simulate native like behaviour even in very simple mixtures and could also have a strong impact on the native stratum corneum as well as high relevance for dermal ceramide substitution. The unnatural l-ceramide [AP] on the other hand should be investigated further, to assess its applicability.
Collapse
Affiliation(s)
- Thomas Schmitt
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany
| | - Stefan Lange
- Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany; Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Stefan Sonnenberger
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Bodo Dobner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg (MLU), Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Bruno Demé
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble CEDEX 9, France
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg (IADP), Weinbergweg 23, 06120 Halle/Saale, Germany.
| | - Gert Gooris
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Max Planckweg 8 2333 CE Leiden, The Netherlands
| | - Joke A Bouwstra
- Leiden Academic Centre for Drug Research, Department of Drug Delivery Technology, Gorlaeus Laboratories, University of Leiden, Max Planckweg 8 2333 CE Leiden, The Netherlands
| |
Collapse
|
7
|
Stahlberg S, Eichner A, Sonnenberger S, Kováčik A, Lange S, Schmitt T, Demé B, Hauß T, Dobner B, Neubert RHH, Huster D. Influence of a Novel Dimeric Ceramide Molecule on the Nanostructure and Thermotropic Phase Behavior of a Stratum Corneum Model Mixture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9211-9221. [PMID: 28819979 DOI: 10.1021/acs.langmuir.7b01227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The stratum corneum (SC) is the outermost layer of the skin and is composed of a multilayered assembly of mostly ceramids (Cer), free fatty acids, cholesterol (Chol), and cholesterol sulfate (Chol-S). Because of the tight packing of these lipids, the SC features unique barrier properties defending the skin from environmental influences. Under pathological conditions, where the skin barrier function is compromised, topical application of molecules that rigidify the SC may lead to a restored barrier function. To this end, molecules are required that incorporate into the SC and bring back the original rigidity of the skin barrier. Here, we investigated the influence of a novel dimeric ceramide (dim-Cer) molecule designed to feature a long, rigid hydrocarbon chain ideally suited to forming an orthorhombic lipid phase. The influence of this molecules on the thermotropic phase behavior of a SC mixture consisting of Cer[AP18] (55 wt %), cholesterol (Chol, 25 wt %), steric acid (SA, 15 wt %), and cholesterol sulfate (Chol-S, 5 wt %) was studied using a combination of neutron diffraction and 2H NMR spectroscopy. These methods provide detailed insights into the packing properties of the lipids in the SC model mixture. Dim-Cer remains in an all-trans state of the membrane-spanning lipid chain at all investigated temperatures, but the influence on the phase behavior of the other lipids in the mixture is marginal. Biophysical experiments are complemented by permeability measurements in model membranes and human skin. The latter, however, indicates that dim-Cer only partially provides the desired effect on membrane permeability, necessitating further optimization of its structure for medical applications.
Collapse
Affiliation(s)
- Sören Stahlberg
- Institute for Medical Physics and Biophysics, Leipzig University , Leipzig, Germany
| | - Adina Eichner
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - Stefan Sonnenberger
- Institute for Medical Physics and Biophysics, Leipzig University , Leipzig, Germany
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - Andrej Kováčik
- Institute for Medical Physics and Biophysics, Leipzig University , Leipzig, Germany
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University , Akademika Heyrovského 1203, 50005 Hradec Králové, Czech Republic
| | - Stefan Lange
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - Thomas Schmitt
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , Berlin, Germany
| | - Bruno Demé
- Institute Laue-Langevin (ILL) , Grenoble, France
| | - Thomas Hauß
- Institute of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie , Berlin, Germany
| | - Bodo Dobner
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Pharmacy and #Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg , Halle (Saale), Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University , Leipzig, Germany
| |
Collapse
|