1
|
Han Y, Yu Y, Zhang C, Li S, Yuan J, Li F. Transcriptome Analysis Reveals the Molecular Mechanism Involved in Carotenoid Absorption and Metabolism in the Ridgetail White Prawn Exopalaemon carinicauda. Animals (Basel) 2025; 15:1314. [PMID: 40362129 PMCID: PMC12071124 DOI: 10.3390/ani15091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Astaxanthin plays a vital role in pigmentation, immune function, reproduction, and antioxidation in aquatic species. To clarify the molecular mechanism of astaxanthin utilization in Exopalaemon carinicauda (E. carinicauda), we conducted a comparative transcriptome analysis on the intestine, hepatopancreas, and muscle of E. carinicauda, fed with an astaxanthin diet and a normal diet. A total of 144 differentially expressed genes (DEGs) were identified in three tissues between the two groups. Genes related to absorption and transport, such as LDLR and the vitellogenin receptor, were upregulated in the intestine after astaxanthin supplementation, while the ileal sodium/bile acid cotransporter-like gene was downregulated. In the hepatopancreas, genes involved in lipid storage and degradation were significantly altered at the transcriptional level, including Kruppel 1-like, ACSBG2, δ(7)-sterol 5(6)-desaturase-like, and PNLIPRP2. In the muscle, the expression of the FABP gene was significantly upregulated, while several actin and troponin genes were significantly downregulated. Furthermore, GSEA analysis on the transcriptomes of three tissues revealed that astaxanthin supplementation influenced the expression of genes related to antioxidation and growth, indicating that astaxanthin may have a positive impact on the growth, development, and resistance of organisms. The data from this research provide valuable insights into elucidating the molecular mechanisms underlying astaxanthin absorption and metabolism and also offer guidance for the application of astaxanthin in the aquaculture of economically important crustaceans.
Collapse
Affiliation(s)
- Yumin Han
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Chengsong Zhang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Shihao Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Jianbo Yuan
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| | - Fuhua Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China; (Y.H.); (C.Z.); (S.L.); (J.Y.)
- College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
2
|
Kergomard J, Carrière F, Paboeuf G, Chonchon L, Barouh N, Vié V, Bourlieu C. Interfacial adsorption and activity of pancreatic lipase-related protein 2 onto heterogeneous plant lipid model membranes. Biochimie 2023; 215:12-23. [PMID: 37062468 DOI: 10.1016/j.biochi.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Pancreatic lipase related-protein 2 (PLRP2) exhibits remarkable galactolipase and phospholipase A1 activities, which depend greatly on the supramolecular organization of the substrates and the presence of surfactant molecules such as bile salts. The objective of the study was to understand the modulation of the adsorption mechanisms and enzymatic activity of Guinea pig PLRP2 (gPLRP2), by the physical environment of the enzyme and the physical state of its substrate. Langmuir monolayers were used to reproduce homogeneous and heterogeneous photosynthetic model membranes containing galactolipids (GL), and/or phospholipids (PL), and/or phytosterols (pS), presenting uncharged or charged interfaces. The same lipid mixtures were also used to form micrometric liposomes, and their gPLRP2 catalyzed digestion kinetics were investigated in presence or in absence of bile salts (NaTDC) during static in vitro, so called "bulk", digestion. The enzymatic activity of gPLRP2 onto the galactolipid-based monolayers was characterized with an optimum activity at 15 mN/m, in the absence of bile salts. gPLRP2 showed enhanced adsorption onto biomimetic model monolayer containing negatively charged lipids. However, the compositional complexity in the heterogeneous uncharged model systems induced a lag phase before the initiation of lipolysis. In bulk, no enzymatic activity could be demonstrated on GL-based liposomes in the absence of bile salts, probably due to the high lateral pressure of the lipid bilayers. In the presence of NaTDC (4 mM), however, gPLRP2 showed both high galactolipase and moderate phospholipase A1 activities on liposomes, probably due to a decrease in packing and lateral pressure upon NaTDC adsorption, and subsequent disruption of liposomes.
Collapse
Affiliation(s)
- Jeanne Kergomard
- IPR Institute of Physics, Université de Rennes, France; INRAE/UM/Institut Agro Montpellier UMR 1208 IATE, France
| | - Frédéric Carrière
- Aix-Marseille Université, CNRS, UMR7281 Bioénergétique et Ingénierie des Protéines, Marseille, France
| | - Gilles Paboeuf
- IPR Institute of Physics, Université de Rennes, France; Univ Rennes, CNRS, ScanMAT - UMS 2001, F-35042, Rennes, France
| | | | - Nathalie Barouh
- CIRAD, UMR QUALISUD, F34398, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de La Réunion, Montpellier, France
| | - Véronique Vié
- IPR Institute of Physics, Université de Rennes, France; Univ Rennes, CNRS, ScanMAT - UMS 2001, F-35042, Rennes, France.
| | | |
Collapse
|
3
|
Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat Commun 2022; 13:143. [PMID: 35013273 PMCID: PMC8748632 DOI: 10.1038/s41467-021-27706-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Phytosterol serum concentrations are under tight genetic control. The relationship between phytosterols and coronary artery disease (CAD) is controversially discussed. We perform a genome-wide meta-analysis of 32 phytosterol traits reflecting resorption, cholesterol synthesis and esterification in six studies with up to 9758 subjects and detect ten independent genome-wide significant SNPs at seven genomic loci. We confirm previously established associations at ABCG5/8 and ABO and demonstrate an extended locus heterogeneity at ABCG5/8 with different functional mechanisms. New loci comprise HMGCR, NPC1L1, PNLIPRP2, SCARB1 and APOE. Based on these results, we perform Mendelian Randomization analyses (MR) revealing a risk-increasing causal relationship of sitosterol serum concentrations and CAD, which is partly mediated by cholesterol. Here we report that phytosterols are polygenic traits. MR add evidence of both, direct and indirect causal effects of sitosterol on CAD.
Collapse
|
4
|
Zhu G, Fang Q, Zhu F, Huang D, Yang C. Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States. Front Genet 2021; 12:693538. [PMID: 34290745 PMCID: PMC8287333 DOI: 10.3389/fgene.2021.693538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Pancreatic lipase is critical for the digestion and absorption of dietary fats. The most abundant lipolytic enzymes secreted by the pancreas are pancreatic triglyceride lipase (PTL or PNLIP) and its family members, pancreatic lipase-related protein 1 (PNLIPRP1or PLRP1) and pancreatic lipase-related protein 2 (PNLIPRP2 or PLRP2). Unlike the family’s other members, PNLIPRP2 plays an elemental role in lipid digestion, especially for newborns. Therefore, if genetic factors cause gene mutation, or other factors lead to non-expression, it may have an effect on fat digestion and absorption, on the susceptibility to pancreas and intestinal pathogens. In this review, we will summarize what is known about the structure and function of PNLIPRP2 and the levels of PNLIPRP2 and associated various pathological states.
Collapse
Affiliation(s)
- Guoying Zhu
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Pediatrics Gastroenterology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Fang
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengshang Zhu
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongping Huang
- Department of Clinical Nutrition, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changqing Yang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Belhaj I, Amara S, Parsiegla G, Sutto-Ortiz P, Sahaka M, Belghith H, Rousset A, Lafont D, Carrière F. Galactolipase activity of Talaromyces thermophilus lipase on galactolipid micelles, monomolecular films and UV-absorbing surface-coated substrate. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1006-1015. [PMID: 29859246 DOI: 10.1016/j.bbalip.2018.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/08/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
Abstract
Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10 ng of enzymes, against 100 ng to 10 μg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.
Collapse
Affiliation(s)
- Inès Belhaj
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologies de Sfax, Université de Sfax, BP "1177", 3018 Sfax, Tunisia.
| | - Sawsan Amara
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France; Lipolytech, Zone Luminy Biotech Entreprises Case 922, 163 avenue de Luminy, 13288 Marseille Cedex 09, France
| | - Goetz Parsiegla
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Priscila Sutto-Ortiz
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Moulay Sahaka
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Hafedh Belghith
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologies de Sfax, Université de Sfax, BP "1177", 3018 Sfax, Tunisia
| | - Audric Rousset
- Laboratoire de Chimie Organique II-Glycochimie, ICBMS UMR 5246, CNRS-Université Claude Bernard Lyon 1, Université de Lyon, Bâtiment Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Dominique Lafont
- Laboratoire de Chimie Organique II-Glycochimie, ICBMS UMR 5246, CNRS-Université Claude Bernard Lyon 1, Université de Lyon, Bâtiment Curien, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Frédéric Carrière
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines UMR 7281, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|