1
|
Krishnarjuna B, Sharma G, Im SC, Auchus R, Anantharamaiah GM, Ramamoorthy A. Characterization of nanodisc-forming peptides for membrane protein studies. J Colloid Interface Sci 2024; 653:1402-1414. [PMID: 37801850 PMCID: PMC10864042 DOI: 10.1016/j.jcis.2023.09.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/08/2023]
Abstract
Lipid-bilayer nanodiscs provide a stable, native-like membrane environment for the functional and structural studies of membrane proteins and other membrane-binding molecules. Peptide-based nanodiscs having unique properties are developed for membrane protein studies and other biological applications. While the self-assembly process rendering the formation of peptide-nanodiscs is attractive, it is important to understand the stability and suitability of these nanodisc systems for membrane protein studies. In this study, we investigated the nanodiscs formation by the anti-inflammatory and tumor-suppressing peptide AEM28. AEM28 is a chimeric peptide containing a cationic-rich heparan sulfate proteoglycan- (HSPG)-binding domain from human apolipoprotein E (hapoE) (141-150) followed by the 18A peptide's amino acid sequence. AEM28-based nanodiscs made with different types of lipids were characterized using various biophysical techniques and compared with the nanodiscs formed using 2F or 4F peptides. Variable temperature dynamic light-scattering and 31P NMR experiments indicated the fusion and size heterogeneity of nanodiscs at high temperatures. The suitability of AEM28 and Ac-18A-NH2- (2F-) based nanodiscs for studying membrane proteins is demonstrated by reconstituting and characterizing a drug-metabolizing enzyme, cytochrome-P450 (CYP450), or the redox complex CYP450-CYP450 reductase. AEM28 and 2F were also tested for their efficacies in solubilizing E. coli membranes to understand the possibility of using them for detergent-free membrane protein isolation. Our experimental results suggest that AEM28 nanodiscs are suitable for studying membrane proteins with a net positive charge, whereas 2F-based nanodiscs are compatible with any membrane proteins and their complexes irrespective of their charge. Furthermore, both peptides solubilized E. coli cell membranes, indicating their use in membrane protein isolation and other applications related to membrane solubilization.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA
| | - Gaurav Sharma
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA
| | - Sang-Choul Im
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard Auchus
- Department of Pharmacology and Internal Medicine, Division of Metabolism, Endocrinology, & Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, AL 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Arbor, MI 48109, USA; National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Tallahassee, FL 32310, USA.
| |
Collapse
|
2
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
3
|
Yu T, Omarova M, Zhang M, Hossain I, Chen J, Darvish O, John VT, Zhang D. Uncovering the Optimal Molecular Characteristics of Hydrophobe-Containing Polypeptoids to Induce Liposome or Cell Membrane Fragmentation. Biomacromolecules 2023; 24:1511-1521. [PMID: 36802533 PMCID: PMC10015453 DOI: 10.1021/acs.biomac.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Cellular functions of membrane proteins are strongly coupled to their structures and aggregation states in the cellular membrane. Molecular agents that can induce the fragmentation of lipid membranes are highly sought after as they are potentially useful for extracting membrane proteins in their native lipid environment. Toward this goal, we investigated the fragmentation of synthetic liposome using hydrophobe-containing polypeptoids (HCPs), a class of facially amphiphilic pseudo-peptidic polymers. A series of HCPs with varying chain lengths and hydrophobicities have been designed and synthesized. The effects of polymer molecular characteristics on liposome fragmentation are systemically investigated by a combination of light scattering (SLS/DLS) and transmission electron microscopy (cryo-TEM and negative stained TEM) methods. We demonstrate that HCPs with a sufficient chain length (DPn ≈ 100) and intermediate hydrophobicity (PNDG mol % = 27%) can most effectively induce the fragmentation of liposomes into colloidally stable nanoscale HCP-lipid complexes owing to the high density of local hydrophobic contact between the HCP polymers and lipid membranes. The HCPs can also effectively induce the fragmentation of bacterial lipid-derived liposomes and erythrocyte ghost cells (i.e., empty erythrocytes) to form nanostructures, highlighting the potential of HCPs as novel macromolecular surfactants toward the application of membrane protein extraction.
Collapse
Affiliation(s)
- Tianyi Yu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Marzhana Omarova
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Istiak Hossain
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Jianqiang Chen
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Omead Darvish
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Vijay T. John
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Galiakhmetov AR, Davern CM, Esteves RJA, Awosanya EO, Guthrie QAE, Proulx C, Nevzorov AA. Aligned peptoid-based macrodiscs for structural studies of membrane proteins by oriented-sample NMR. Biophys J 2022; 121:3263-3270. [PMID: 35918898 PMCID: PMC9463639 DOI: 10.1016/j.bpj.2022.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022] Open
Abstract
Development of a robust, uniform, and magnetically orientable lipid mimetic will undoubtedly advance solid-state NMR of macroscopically aligned membrane proteins. Here, we report on a novel lipid membrane mimetic based on peptoid belts. The peptoids, composed of 15 residues, were synthesized by alternating N-(2-phenethyl)glycine with N-(2-carboxyethyl)glycine residues at a 2:1 molar ratio. The chemically synthesized peptoids possess a much lower degree of polydispersity versus styrene-maleic acid polymers, thus yielding uniform discs. Moreover, the peptoid oligomers are more flexible and do not require a specific folding, unlike lipoproteins, in order to wrap around the hydrophobic membrane core. The NMR spectra measured for the membrane-bound form of Pf1 coat protein incorporated in this new lipid mimetics demonstrate a higher order parameter and uniform linewidths compared with the conventional bicelles and peptide-based macrodiscs. Importantly, unlike bicelles, the peptoid-based macrodiscs are detergent free.
Collapse
Affiliation(s)
| | - Carolynn M Davern
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Richard J A Esteves
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Emmanuel O Awosanya
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Quibria A E Guthrie
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
5
|
Landry MR, Rangel JL, Dao VP, MacKenzie MA, Gutierrez FL, Dowell KM, Calkins AL, Fuller AA, Stokes GY. Length and Charge of Water-Soluble Peptoids Impact Binding to Phospholipid Membranes. J Phys Chem B 2019; 123:5822-5831. [PMID: 31251622 DOI: 10.1021/acs.jpcb.9b04641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this study, we provide a quantitative description of the adsorption of water-soluble N-substituted glycine oligomers (peptoids) to supported lipid bilayers that mimic mammalian plasma membranes. We prepared a small array of systematically varied peptoid sequences ranging in length from 3 to 15 residues. Using the nonlinear optical method second harmonic generation (SHG), we directly monitored adsorption of aqueous solutions of 3- and 15-residue peptoids to phospholipid membranes of varying physical phase, cholesterol content, and head group charge in physiologically relevant pH buffer conditions without the use of extrinsic labels. Equilibrium binding constants and relative surface coverages of adsorbed peptoids were determined from fits to the Langmuir model. Three- and 15-residue peptoids did not interact with cholesterol-containing lipids or charged lipids in the same manner, suggesting that a peptoid's adsorption mechanism changes with sequence length. In a comparison of four three-residue peptoids, we observed a correlation between equilibrium binding constants and calculated log D7.4 values. Cationic charge modulated surface coverage. Principles governing how peptoid sequence and membrane composition alter peptoid-lipid interactions may be extended to predict physiological effects of peptoids used as therapeutics or as coatings in medical devices.
Collapse
Affiliation(s)
- Madeleine R Landry
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Jacenda L Rangel
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Vivian P Dao
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Morgan A MacKenzie
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Fabiola L Gutierrez
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Kalli M Dowell
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Anna L Calkins
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Amelia A Fuller
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| | - Grace Y Stokes
- Department of Chemistry and Biochemistry , Santa Clara University , 500 El Camino Real , Santa Clara , California 95053 , United States
| |
Collapse
|