1
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Hakami N, Burgstaller A, Gao N, Rutz A, Mann S, Staufer O. Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies. Adv Healthc Mater 2024; 13:e2303334. [PMID: 38794823 DOI: 10.1002/adhm.202303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Microfluidics plays a pivotal role in organ-on-chip technologies and in the study of synthetic cells, especially in the development and analysis of artificial cell models. However, approaches that use synthetic cells as integral functional components for microfluidic systems to shape the microenvironment of natural living cells cultured on-chip are not explored. Here, colloidosome-based synthetic cells are integrated into 3D microfluidic devices, pioneering the concept of synthetic cell-based microenvironments for organs-on-chip. Methods are devised to create dense and stable networks of silica colloidosomes, enveloped by supported lipid bilayers, within microfluidic channels. These networks promote receptor-ligand interactions with on-chip cultured cells. Furthermore, a technique is introduced for the controlled release of growth factors from the synthetic cells into the channels, using a calcium alginate-based hydrogel formation within the colloidosomes. To demonstrate the potential of the technology, a modular plug-and-play lymph-node-on-a-chip prototype that guides the expansion of primary human T cells by stimulating receptor ligands on the T cells and modulating their cytokine environment is presented. This integration of synthetic cells into microfluidic systems offers a new direction for organ-on-chip technologies and suggests further avenues for exploration in potential therapeutic applications.
Collapse
Affiliation(s)
- Niki Hakami
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angela Rutz
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
| |
Collapse
|
3
|
Ngocho K, Yang X, Wang Z, Hu C, Yang X, Shi H, Wang K, Liu J. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400086. [PMID: 38563581 DOI: 10.1002/smll.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Kleins Ngocho
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xilei Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zefeng Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Cunjie Hu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Wang J, Huang D, Fang Y, Ren H, Zhao Y. Biomimetic cell encapsulations by microfluidics. SCIENCE CHINA MATERIALS 2024; 67:2414-2426. [DOI: 10.1007/s40843-024-2903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/26/2024] [Indexed: 01/12/2025]
|
5
|
Fasciano S, Wang S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technol 2024; 29:100090. [PMID: 37245659 DOI: 10.1016/j.slast.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
6
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
7
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
8
|
Huang F, Xue H, Fu Y, Ouyang Y, Chen D, Xia F, Willner I. Three Compartment Liposome Fusion: Functional Protocells for Biocatalytic Cascades and Operation of Dynamic DNA Machineries. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202302814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Indexed: 01/06/2025]
Abstract
AbstractNucleic acid‐functionalized liposomes modified at their boundaries with o‐nitrobenzyl phosphate‐caged hairpin units and pH‐responsive C‐G·C+ triplex forming strands are used for the concomitant light and pH‐triggered fusion of three types of loaded liposomes. The fusion processes are followed by light‐scattering size enlargement measurements, optical methods, and biocatalytic cascades activated upon the mixing of the liposomes loaded with enzymes and their substrates and their fusion into the cell‐like containments. The fused liposomes act as functional protocells for the integration of biocatalytic machineries. This is exemplified by the operation of an autonomous polymerization/nickase machinery synthesizing a Mg2+‐ion‐dependent DNAzyme and of a transcription machinery yielding the Malachite Green‐RNA aptamer product.
Collapse
Affiliation(s)
- Fujian Huang
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
- Hefei National Research Center for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Yuzhe Fu
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Yu Ouyang
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Danlong Chen
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Engineering Research Center of Nano‐Geomaterials of Ministry of Education Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 China
| | - Itamar Willner
- Institute of Chemistry and Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
9
|
Sakuta H, Nakatani N, Torisawa T, Sumino Y, Tsumoto K, Oiwa K, Yoshikawa K. Self-emergent vortex flow of microtubule and kinesin in cell-sized droplets under water/water phase separation. Commun Chem 2023; 6:80. [PMID: 37100870 PMCID: PMC10133263 DOI: 10.1038/s42004-023-00879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
By facilitating a water/water phase separation (w/wPS), crowded biopolymers in cells form droplets that contribute to the spatial localization of biological components and their biochemical reactions. However, their influence on mechanical processes driven by protein motors has not been well studied. Here, we show that the w/wPS droplet spontaneously entraps kinesins as well as microtubules (MTs) and generates a micrometre-scale vortex flow inside the droplet. Active droplets with a size of 10-100 µm are generated through w/wPS of dextran and polyethylene glycol mixed with MTs, molecular-engineered chimeric four-headed kinesins and ATP after mechanical mixing. MTs and kinesin rapidly created contractile network accumulated at the interface of the droplet and gradually generated vortical flow, which can drive translational motion of a droplet. Our work reveals that the interface of w/wPS contributes not only to chemical processes but also produces mechanical motion by assembling species of protein motors in a functioning manner.
Collapse
Affiliation(s)
- Hiroki Sakuta
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Naoki Nakatani
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Faculty of Advanced Engineering, WaTUS and DCIS, Tokyo University of Science, Katsushika, Tokyo, 125-8585, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie, 514-8507, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan.
- Department of Life Science, Graduate School of Science, University of Hyogo, Ako, Hyogo, 678-1297, Japan.
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Kyoto, 606-8501, Japan
| |
Collapse
|
10
|
Bailoni E, Partipilo M, Coenradij J, Grundel DAJ, Slotboom DJ, Poolman B. Minimal Out-of-Equilibrium Metabolism for Synthetic Cells: A Membrane Perspective. ACS Synth Biol 2023; 12:922-946. [PMID: 37027340 PMCID: PMC10127287 DOI: 10.1021/acssynbio.3c00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 04/08/2023]
Abstract
Life-like systems need to maintain a basal metabolism, which includes importing a variety of building blocks required for macromolecule synthesis, exporting dead-end products, and recycling cofactors and metabolic intermediates, while maintaining steady internal physical and chemical conditions (physicochemical homeostasis). A compartment, such as a unilamellar vesicle, functionalized with membrane-embedded transport proteins and metabolic enzymes encapsulated in the lumen meets these requirements. Here, we identify four modules designed for a minimal metabolism in a synthetic cell with a lipid bilayer boundary: energy provision and conversion, physicochemical homeostasis, metabolite transport, and membrane expansion. We review design strategies that can be used to fulfill these functions with a focus on the lipid and membrane protein composition of a cell. We compare our bottom-up design with the equivalent essential modules of JCVI-syn3a, a top-down genome-minimized living cell with a size comparable to that of large unilamellar vesicles. Finally, we discuss the bottlenecks related to the insertion of a complex mixture of membrane proteins into lipid bilayers and provide a semiquantitative estimate of the relative surface area and lipid-to-protein mass ratios (i.e., the minimal number of membrane proteins) that are required for the construction of a synthetic cell.
Collapse
Affiliation(s)
- Eleonora Bailoni
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Michele Partipilo
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Jelmer Coenradij
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Douwe A. J. Grundel
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Dirk J. Slotboom
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry and Molecular Systems Biology, Groningen Biomolecular
Sciences and Biotechnology Institute, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Kumar S, Karmacharya M, Cho YK. Bridging the Gap between Nonliving Matter and Cellular Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202962. [PMID: 35988151 DOI: 10.1002/smll.202202962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
12
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
13
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
14
|
Zhao S, Nie Y, Zhang W, Hu R, Sheng L, He W, Zhu N, Li Y, Ji D, Guo K. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Jugniot N, Massoud TF, Dahl JJ, Paulmurugan R. Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. J Nanobiotechnology 2022; 20:267. [PMID: 35689262 PMCID: PMC9185914 DOI: 10.1186/s12951-022-01484-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/25/2022] [Indexed: 01/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous breast cancer subtype with poor prognosis. Although anatomical imaging figures prominently for breast lesion screening, TNBC is often misdiagnosed, thus hindering early medical care. Ultrasound (US) molecular imaging using nanobubbles (NBs) capable of targeting tumor cells holds great promise for improved diagnosis and therapy. However, the lack of conventional biomarkers in TNBC impairs the development of current targeted agents. Here, we exploited the homotypic recognition of cancer cells to synthesize the first NBs based on TNBC cancer cell membrane (i.e., NBCCM) as a targeted diagnostic agent. We developed a microfluidic technology to synthesize NBCCM based on the self-assembly property of cell membranes in aqueous solutions. In vitro, optimal NBCCM had a hydrodynamic diameter of 683 ± 162 nm, showed long-lasting US contrast enhancements and homotypic affinity. In vivo, we demonstrated that NBCCM showed increased extravasation and retention in a TNBC mouse model compared to non-targeted NBs by US molecular imaging. Peak intensities and areas under the curves from time-intensity plots showed a significantly enhanced signal from NBCCM compared to non-targeted NBs (2.1-fold, P = 0.004, and, 3.6-fold, P = 0.0009, respectively). Immunofluorescence analysis further validated the presence of NBCCM in the tumor microenvironment. Circumventing the challenge for universal cancer biomarker identification, our approach could enable TNBC targeting regardless of tumor tissue heterogeneity, thus improving diagnosis and potentially gene/drug targeted delivery. Ultimately, our approach could be used to image many cancer types using biomimetic NBs prepared from their respective cancer cell membranes.
Collapse
Affiliation(s)
- Natacha Jugniot
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA.,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA
| | - Jeremy J Dahl
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), and Bio-X Program, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA. .,Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Stanford, CA, 94305-5427, USA. .,Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
16
|
Abstract
Microfluidics has enabled a new era of cellular and molecular assays due to the small length scales, parallelization, and the modularity of various analysis and actuation functions. Droplet microfluidics, in particular, has been instrumental in providing new tools for biology with its ability to quickly and reproducibly generate drops that act as individual reactors. A notable beneficiary of this technology has been single-cell RNA sequencing, which has revealed new heterogeneities and interactions for the fundamental unit of life. However, viruses far surpass the diversity of cellular life, affect the dynamics of all ecosystems, and are a chronic source of global health crises. Despite their impact on the world, high-throughput and high-resolution viral profiling has been difficult, with conventional methods being limited to population-level averaging, large sample volumes, and few cultivable hosts. Consequently, most viruses have not been identified and studied. Droplet microfluidics holds the potential to address many of these limitations and offers new levels of sensitivity and throughput for virology. This Feature highlights recent efforts that have applied droplet microfluidics to the detection and study of viruses, including for diagnostics, virus-host interactions, and cell-independent virus assays. In combination with traditional virology methods, droplet microfluidics should prove a potent tool toward achieving a better understanding of the most abundant biological species on Earth.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee-Sun Han
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Fabrication of Doxorubicin-Loaded Lipid-Based Nanocarriers by Microfluidic Rapid Mixing. Biomedicines 2022; 10:biomedicines10061259. [PMID: 35740280 PMCID: PMC9219747 DOI: 10.3390/biomedicines10061259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Doxorubicin (Dox) is a widely known chemotherapeutic drug that has been encapsulated into liposomes for clinical use, such as Doxil® and Myocet®. Both of these are prepared via remote loading methods, which require multistep procedures. Additionally, their antitumor efficacy is hindered due to the poor drug release from PEGylated liposomes in the tumor microenvironment. In this study, we aimed to develop doxorubicin-loaded lipid-based nanocarriers (LNC-Dox) based on electrostatic interaction using microfluidic technology. The resulting LNC-Dox showed high loading capacity, with a drug-to-lipid ratio (D/L ratio) greater than 0.2, and high efficacy of drug release in an acidic environment. Different lipid compositions were selected based on critical packing parameters and further studied to outline their effects on the physicochemical characteristics of LNC-Dox. Design of experiments was implemented for formulation optimization. The optimized LNC-Dox showed preferred release in acidic environments and better therapeutic efficacy compared to PEGylated liposomal Dox in vivo. Thus, this study provides a feasible approach to efficiently encapsulate doxorubicin into lipid-based nanocarriers fabricated by microfluidic rapid mixing.
Collapse
|
18
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Ramsay K, Levy J, Gobbo P, Elvira KS. Programmed assembly of bespoke prototissues on a microfluidic platform. LAB ON A CHIP 2021; 21:4574-4585. [PMID: 34723291 DOI: 10.1039/d1lc00602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise assembly of protocell building blocks into prototissues that are stable in water, capable of sensing the external environment and which display collective behaviours remains a considerable challenge in prototissue engineering. We have designed a microfluidic platform that enables us to build bespoke prototissues from predetermined compositions of two types of protein-polymer protocells. We can accurately control their size, composition and create unique Janus configurations in a way that is not possible with traditional methods. Because we can control the number and type of the protocells that compose the prototissue, we can hence modulate the collective behaviours of this biomaterial. We show control over both the amplitude of thermally induced contractions in the biomaterial and its collective endogenous biochemical reactivity. Our results show that microfluidic technologies enable a new route to the precise and high-throughput fabrication of tissue-like materials with programmable collective properties that can be tuned through careful assembly of protocell building blocks of different types. We anticipate that our bespoke prototissues will be a starting point for the development of more sophisticated artificial tissues for use in medicine, soft robotics, and environmentally beneficial bioreactor technologies.
Collapse
Affiliation(s)
- Kaitlyn Ramsay
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| | - Jae Levy
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | | | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| |
Collapse
|
20
|
Abstract
A major goal of synthetic biology is to understand the transition between non-living matter and life. The bottom-up development of an artificial cell would provide a minimal system with which to study the border between chemistry and biology. So far, a fully synthetic cell has remained elusive, but chemists are progressing towards this goal by reconstructing cellular subsystems. Cell boundaries, likely in the form of lipid membranes, were necessary for the emergence of life. In addition to providing a protective barrier between cellular cargo and the external environment, lipid compartments maintain homeostasis with other subsystems to regulate cellular processes. In this Review, we examine different chemical approaches to making cell-mimetic compartments. Synthetic strategies to drive membrane formation and function, including bioorthogonal ligations, dissipative self-assembly and reconstitution of biochemical pathways, are discussed. Chemical strategies aim to recreate the interactions between lipid membranes, the external environment and internal biomolecules, and will clarify our understanding of life at the interface of chemistry and biology.
Collapse
|
21
|
Liu X, Xiong Y, Zhang C, Lai R, Liu H, Peng R, Fu T, Liu Q, Fang X, Mann S, Tan W. G-Quadruplex-Induced Liquid-Liquid Phase Separation in Biomimetic Protocells. J Am Chem Soc 2021; 143:11036-11043. [PMID: 34270902 DOI: 10.1021/jacs.1c03627] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomolecular condensates comprised of specific proteins and nucleic acids are now recognized as one of the key organizing mechanisms in eukaryotic cells. However, the specific roles played by the nucleic acid secondary structure and sequence in biomolecular phase separation are still not clear. Here, utilizing giant membrane vesicles (GMVs) as a protocell model, we found that single-stranded DNA (ssDNA) with a parallel G-quadruplex structure could functionally cooperate with a G-quadruplex-binding protein to form speckle-like puncta inside the GMVs. The clustering behavior is dependent on the structural diversity of G-quadruplexes, and the reversible clustering behavior implicated a new pathway in dynamically regulating the formation of biomolecular condensates. This finding represents a potential link between G-quadruplex-binding proteins and the resulting G-quadruplex-mediated biomolecular phase separation, which would gain insight into a wide range of biological processes associated with nucleic acid-modulated phase separation inside living cells.
Collapse
Affiliation(s)
- Xuejiao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yansong Xiong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Rongji Lai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
23
|
|
24
|
Huang F, Duan R, Zhou Z, Vázquez-González M, Xia F, Willner I. Near-infrared light-activated membrane fusion for cancer cell therapeutic applications. Chem Sci 2020; 11:5592-5600. [PMID: 32874503 PMCID: PMC7441577 DOI: 10.1039/d0sc00863j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The spatiotemporal stimulation of liposome-liposome or liposome-membrane fusion processes attracts growing interest as a means to mimic cell-cell interactions in nature and for using these processes for biomedical applications. We report the use of o-nitrobenzyl phosphate functionalized-cholesterol tethered nucleic acid-modified liposomes as functional photoresponsive units for inducing, by NIR-irradiation, spatiotemporal liposome-liposome or liposome-membrane fusion processes. The liposomes are loaded with upconversion nanoparticles (UCNPs) and their NIR irradiation (λ = 980 nm) yields luminescence at λ = 365 nm, providing a localized light-source to deprotect the o-nitrobenzyl phosphate groups and resulting in the fragmentation of the nucleic acid structures. In one system, the NIR-triggered fusion of two liposomes, L1 and L2, is exemplified. Liposome L1 is loaded with UCNPs and Tb3+ ions, and the liposome boundary is functionalized with a cholesterol-tethered, o-nitrobenzyl phosphate caged hairpin nucleic acid structure. Liposome L2 is loaded with 2,6-pyridinedicarboxylic acid, DPA, and its boundary is modified with a cholesterol-tethered nucleic acid, complementary to a part of the caged hairpin, associated with L1. NIR-irradiation of the L1/L2 mixture resulted in the photocleavage of the hairpin structure, associated with L1, and the resulting fragmented nucleic acid associated with L1 hybridized with the nucleic acid linked to L2, leading to the fusion of the two liposomes. The fusion process was followed by dynamic light scattering, and by monitoring the fluorescence of the Tb3+-DPA complex generated upon the fusion of the liposomes and their exchange of contents (fusion efficiency 30%). In a second system, the fusion of the liposomes L1, loaded with UCNPs and doxorubicin (DOX), with HeLa cancer cells functionalized with nucleic acid tethers, complementary to the hairpin units associated with the boundary of L1, and linked to the MUC-1 receptor sites associated with the HeLa cells, through a MUC-1 aptamer unit is exemplified. The effect of DOX-loaded L1/HeLa cell fusion on the cytotoxicity towards HeLa cells is addressed. The NIR UCNP-stimulated cleavage of the o-nitrobenzyl phosphate caged hairpin units associated with L1 leads to the fragmentation of the hairpin units and the resulting nucleic acid tethers hybridize with the nucleic acid-modified HeLa cells, resulting in the liposome-HeLa cell fusion and the release of DOX into the HeLa cells. Selective spatiotemporal cytotoxicity towards HeLa cells is demonstrated (ca. 40% cell killing within two days). The study presents a comprehensive stepwise set of experiments directed towards the development of NIR-driven liposome-liposome or liposome-membrane fusion processes.
Collapse
Affiliation(s)
- Fujian Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Ruilin Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Zhixin Zhou
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Margarita Vázquez-González
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education , Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , China . ;
| | - Itamar Willner
- Institute of Chemistry , Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel .
| |
Collapse
|
25
|
Cheng G, Perez-Mercader J. Dissipative Self-Assembly of Dynamic Multicompartmentalized Microsystems with Light-Responsive Behaviors. Chem 2020. [DOI: 10.1016/j.chempr.2020.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Prangemeier T, Lehr FX, Schoeman RM, Koeppl H. Microfluidic platforms for the dynamic characterisation of synthetic circuitry. Curr Opin Biotechnol 2020; 63:167-176. [PMID: 32172160 DOI: 10.1016/j.copbio.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
Abstract
Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts.
Collapse
Affiliation(s)
- Tim Prangemeier
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - François-Xavier Lehr
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Rogier M Schoeman
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Heinz Koeppl
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany.
| |
Collapse
|
27
|
Yandrapalli N, Seemann T, Robinson T. On-Chip Inverted Emulsion Method for Fast Giant Vesicle Production, Handling, and Analysis. MICROMACHINES 2020; 11:E285. [PMID: 32164221 PMCID: PMC7142477 DOI: 10.3390/mi11030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/25/2023]
Abstract
Liposomes and giant unilamellar vesicles (GUVs) in particular are excellent compartments for constructing artificial cells. Traditionally, their use requires bench-top vesicle growth, followed by experimentation under a microscope. Such steps are time-consuming and can lead to loss of vesicles when they are transferred to an observation chamber. To overcome these issues, we present an integrated microfluidic chip which combines GUV formation, trapping, and multiple separate experiments in the same device. First, we optimized the buffer conditions to maximize both the yield and the subsequent trapping of the vesicles in micro-posts. Captured GUVs were monodisperse with specific size of 18 ± 4 µm in diameter. Next, we introduce a two-layer design with integrated valves which allows fast solution exchange in less than 20 s and on separate sub-populations of the trapped vesicles. We demonstrate that multiple experiments can be performed in a single chip with both membrane transport and permeabilization assays. In conclusion, we have developed a versatile all-in-one microfluidic chip with capabilities to produce and perform multiple experiments on a single batch of vesicles using low sample volumes. We expect this device will be highly advantageous for bottom-up synthetic biology where rapid encapsulation and visualization is required for enzymatic reactions.
Collapse
Affiliation(s)
| | | | - Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|