1
|
Lión-Villar J, Fernández-García JM, Medina Rivero S, Perles J, Wu S, Aranda D, Wu J, Seki S, Casado J, Martín N. Synthesis of zwitterionic open-shell bilayer spironanographenes. Nat Chem 2025:10.1038/s41557-025-01810-2. [PMID: 40307418 DOI: 10.1038/s41557-025-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Molecular nanographenes (NGs) are nanoscale graphene fragments obtained by organic synthetic protocols. Here we report the bottom-up synthesis of two spiro-NGs formed by two substituted hexa-peri-hexabenzocoronenes (HBCs), spiro-NG and F-spiro-NG. The X-ray crystal structure of the deca-tert-butyl-functionalized spiro-NG shows a bilayer disposition of the HBCs in face-to-face contact. By contrast, F-spiro-NG, which features tert-butyl substituents on one HBC unit, and fluorine on the other HBC unit, is an electron donor-acceptor bilayer NG. The structural assembly of the donor and acceptor graphenic layers enables an electron-transfer process that leads to the formation of a zwitterionic open shell, paramagnetic species constituted by a radical cation and a radical anion located in the donor and the acceptor HBCs, respectively. Magnetic and spectroelectrochemical experiments, together with theoretical calculations, support the persistent/dominant charge-separated nature of F-spiro-NG. Furthermore, photoconductivity measurements show a significant increase of the charge carrier mobility in the case of F-spiro-NG (Σμ = 6 cm2 V-1 s-1) compared with spiro-NG.
Collapse
Affiliation(s)
- Juan Lión-Villar
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús M Fernández-García
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Samara Medina Rivero
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Josefina Perles
- Laboratorio DRX Monocristal, SIdI, Universidad Autónoma de Madrid, Madrid, Spain
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Daniel Aranda
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
| | - Juan Casado
- Departamento de Química-Física, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
| | - Nazario Martín
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
- IMDEA-Nanociencia, Madrid, Spain.
| |
Collapse
|
2
|
Zhang R, Chen X, Zhu L, Huang Y, Zhai Z, Wang Q, Wang L, Wang T, Wang WZ, Ye KY, Li Y. Thiophene-backbone arcuate graphene nanoribbons: shotgun synthesis and length dependent properties. Chem Sci 2025; 16:7366-7373. [PMID: 40151476 PMCID: PMC11938106 DOI: 10.1039/d4sc08353a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Efficient synthetic methods are urgently needed to produce graphene nanoribbons (GNRs) with diverse structures and functions. Precise control over the topological edges of GNRs is also crucial for achieving diverse molecular topologies and desirable electro-optical properties. This study demonstrates a highly efficient "shotgun" synthesis of thiophene-backbone arcuate GNRs, offering a significant advantage over tedious iterative synthesis. This method utilizes a one-pot, three component Suzuki-Miyaura coupling for the precursor, followed by a Scholl reaction for cyclization. The resulting arcuate GNRs have sulfur atoms embedded in the carbon backbone with a combined armchair, cove, and fjord edge structure. This multi-edge architecture is further modified by high-yield oxidation of the electron-rich sulfur atoms to electron-deficient sulfones, enabling precise regulation of the GNRs' electronic properties. These arcuate GNRs with diverse edge structures, heteroatom doping and precise lengths open exciting avenues for their application in optoelectronic devices.
Collapse
Affiliation(s)
- Ruiying Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Xinyu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Lingyun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Yanxia Huang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Zi'ang Zhai
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Qiang Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Lingding Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Taosong Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Wei-Zhen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University Fuzhou Fujian 350108 China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
3
|
Chen Y, Zhang L. Buckybowl-Based Nanocarbons: Synthesis, Properties, and Applications. Acc Chem Res 2025; 58:762-776. [PMID: 39980342 DOI: 10.1021/acs.accounts.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
ConspectusThe introduction of a five-membered ring into hexagon-fused networks typically induces strain that causes positive Gaussian curvature, leading to bowl-shaped polycyclic aromatic hydrocarbons (PAHs), often referred to as buckybowls or π-bowls. The interest in buckybowls is derived from their intriguing properties including, but not limited to, pyramidalized sp2 carbon atoms, low-lying lowest unoccupied molecular orbital (LUMO), surface charge stabilization, and bowl-to-bowl inversion. In recent years, investigations into the functionalization of buckybowls, as well as the structural aspects related to properties, have made significant progress. Indeed, the functionalization of buckybowls is a major route to increase structural diversity and fine-tune their properties. In particular, the fusion of aromatic rings to buckybowl rims (π-extension of buckybowls) has established a particularly promising synthetic strategy to access a wide range of buckybowl-based nanostructures with unique topologies and properties. A major obstacle, however, is the limited number of appropriate buckybowls, which could be suggested as potential frameworks for further functionalization. Moreover, buckybowls have been typically synthesized by ring-closing reactions, but many of these procedures suffer from the occurrence of considerable strain and lead to an undesired rearrangement. As a result, the development of buckybowl-based nanocarbons with desirable properties is still in its infancy due to the limited structural diversity, functionalization, and scalability.This Account describes our recent progress in the synthesis of buckybowls and buckybowl-based nanocarbons. In our study, diindeno[4,3,2,1-fghi:4',3',2',1'-opqr]perylene (DIP), pyracyleno[6,5,4,3,2,1-pqrstuv]pentaphene (PP), tetracyclopenta[cd,fg,jk,mn]pyrene (TPP), and corannulene are employed as basic structural units, which exhibit a bowl-shaped geometry and offer an ideal platform for functionalization. General bottom-up approaches have been used to access buckybowl derivatives functionalized with peripheral alkynyl and aryl groups. These substituent groups significantly influence solubility, energy levels, and crystal packing, all of which impact their performance. These buckybowls are ultimately converted into π-extended nanocarbons with wide-ranging structural diversity, including doubly curved, rippled, and chiral nanocarbons. Chiral buckybowl-based nanocarbons, where chirality is introduced from quasi-[8]circulene moieties, have high enantiomerization barriers, enabling the separation of the enantiomers. Notably, the rippled nanocarbon containing 10 aromatic rings directly fused to the TPP core exhibits attractive electronic, magnetic, and mechanical properties, which can be further functionalized through the use of well-established chemistry, opening up many possibilities to access unusual carbon allotropes.The assembly with fullerenes is an important application for buckybowls and buckybowl-based nanocarbons. Depending on the peripheral substituent, the binding constant of buckybowls with fullerenes can be tuned. Moreover, buckybowl-based nanocarbons significantly increase the ability to bind fullerenes, resulting in the formation of highly ordered host-guest systems. These features make the nanocarbons excellent molecules for device applications. As expected, these buckybowl-based nanocarbons can function as organic semiconductors for organic field-effect transistors (OFETs), which have mobilities up to 2.30 cm2 V-1 s-1. The host-guest complexes exhibit highly efficient ambipolar characteristics with nearly balanced mobilities on the order of 10-1 cm2 V-1 s-1. In addition, some buckybowl-based nanocarbons show promising applications in photothermal materials with over 90% photothermal conversion efficiency.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Górski K, Pejov L, Jørgensen KB, Knysh I, Jacquemin D, Gryko DT. Twofold 6π-Electrocyclization as a Route Toward Multi-Heteroatom-Doped Nanographenes Built on a 1,4-Dihydropyrrolo[3,2-b]pyrrole Core. Chemistry 2025; 31:e202404094. [PMID: 39587457 DOI: 10.1002/chem.202404094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Here we present a highly versatile synthetic strategy based on twofold 6π-electrocyclization accompanied with HBr elimination as a novel approach towards centrosymmetric multi-heteroatom-doped nanographenes build around an electron-rich 1,4-dihydropyrrolo[3,2-b]pyrrole core. A straightforward synthesis from readily available substrates offers a unique possibility of fusing the 1,4-dihydropyrrolo[3,2-b]pyrrole subunit not only with carbocyclic building blocks, such as electron-deficient phenanthrenes, chrysenes, or [4]helicenes, but also with heterocyclic systems, such as benzo[b]furan and 5-thiatruxene. The clear advantage of this strategy is that there is no requirement to assemble complex scaffolds possessing bromoaryl units since bromine atom is introduced by bromination of 1,4-dihydropyrrolo[3,2-b]pyrrole core which, because of its exceptionally electron-rich character, is straightforward reaction. The obtained χ-shaped and S-shaped nanographenes containing 10 or more fused rings, exhibit visible-range emissions characterized by fluorescence quantum yields reaching 48 %. Computational studies of the reaction mechanism revealed that the 6π-electrocyclization is kinetically favourable over photo-induced direct arylation. Steady-state UV/Visible spectroscopy reveals that upon photoexcitation, the prepared S-shaped N-doped nanographenes undergo mostly radiative relaxation leading to large fluorescence quantum yields. We anticipate that this chemistry will empower the creation of new materials with various functionalities.
Collapse
Affiliation(s)
- Krzysztof Górski
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Ljupcho Pejov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, SS Cyril and Methodius University, Skopje, North Macedonia
- Environmental and Resource Management Program, The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kåre B Jørgensen
- Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000, Nantes, France
- Institut Universitaire de France, F-75005, Paris, France
| | - Daniel T Gryko
- Institute of Organic Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
5
|
Maekawa T, Itami K. Rapid access to functionalized nanographenes through a palladium-catalyzed multi-annulation sequence. Chem Sci 2025; 16:3092-3098. [PMID: 39845870 PMCID: PMC11748050 DOI: 10.1039/d4sc07995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives via a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst. This method enables the preparation of small nanographenes bearing various polar functional groups, such as hydroxy, amino, and pyridinic nitrogen atoms, which are otherwise difficult to incorporate. These functional groups provide valuable sites for further derivatization, allowing the modulation of small nanographenes' solubility, optoelectronic properties, and photochromic and vapochromic behaviors. Our new method thus provides a platform for facile access to novel carbon-based materials.
Collapse
Affiliation(s)
- Takehisa Maekawa
- Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
| | - Kenichiro Itami
- Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
- Molecule Creation Laboratory, Cluster for Pioneering Research, RIKEN, Wako Saitama 351-0198 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8602 Japan
| |
Collapse
|
6
|
Goel K, Satyanarayana G. Microwave-Assisted Palladium-Catalyzed Crossover-Annulation: Access to Fused Polycyclic Benzofuran Scaffolds. Org Lett 2025; 27:80-85. [PMID: 39720914 DOI: 10.1021/acs.orglett.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
This study demonstrates quick access to heteroatom-embodied complex fused polycyclic frameworks through a palladium-catalyzed domino process facilitated by microwave-assisted crossover annulation of o-alkynylarylhalides and dihydrobenzofurans derivatives. The overall success of this process lies in the careful design of dihydrobenzofuran precursors that direct the initial palladium-mediated annulation step to proceed in a highly regioselective manner to furnish a single regioisomeric product. Notably, this one-pot method has witnessed good substrate scope and has furnished products with excellent yields.
Collapse
Affiliation(s)
- Komal Goel
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 284, Sangareddy District, Telangana, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 284, Sangareddy District, Telangana, India
| |
Collapse
|
7
|
David AHG, Roger M, Alévêque O, Melnychenko H, Le Bras L, Allain M, Gapin A, Canevet D, Ségut O, Levillain E, Goujon A. Intermolecular Anionic Mixed-Valence and π-Dimer Complexes of ortho-Pentannulated Bisazacoronene Diimide. Angew Chem Int Ed Engl 2025; 64:e202413616. [PMID: 39163166 DOI: 10.1002/anie.202413616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
This study reports the serendipitous discovery of intermolecular anionic mixed-valence (MV) and π-dimer species in ortho-pentannulated BisAzaCoroneneDiimides (BACDs) during their electrochemical reduction in a non-aqueous solvent. A library of nitrogen-containing extended PDIs was synthesized via an aza-benzannulation reaction followed by a Pd-catalysed ortho-pentannulation reaction. Ortho-pentannulated BACDs revealed strong aggregation abilities in solution. Concentration-dependent UV/Vis absorption spectra, variable temperature 1H NMR experiments, and atomic force microscopy coupled to molecular dynamics support their self-assembly into columnar aggregates. Cyclic voltammetry experiments in dichloromethane reveal prominent splitting of the first reduction wave, attributed to the formation of unprecedented intermolecular anionic MV and π-dimers in organic solvent. These species were thoroughly characterized by real-time spectroelectrochemistry, electrochemical simulations and theoretical calculations. Remarkably, this work underscores the tuneable nature of AzaBenzannulatedPerylene Diimides (AzaBPDIs) and BACDs, emphasizing their potential as a promising scaffold for designing supramolecular materials with long-range radical anion delocalization. The observation of this phenomenon provides insights into the fundamental behaviour of supramolecular organic semiconductors, thereby paving the way for the development of novel electronic devices and electron-deficient materials.
Collapse
Affiliation(s)
- Arthur H G David
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Maxime Roger
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Olivier Alévêque
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Heorhii Melnychenko
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Laura Le Bras
- Chrono-environnement, CNRS, Université de Franche-Comté, 16 route de Gray, 25030, Besançon, France
| | - Magali Allain
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Adèle Gapin
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - David Canevet
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Olivier Ségut
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Eric Levillain
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| | - Antoine Goujon
- MOLTECH-Anjou, SFR MATRIX, Univ Angers, CNRS, 2 Bd Lavoisier, 49000, Angers, France
| |
Collapse
|
8
|
Yence M, Ahmadli D, Surmeli D, Karacaoğlu UM, Pal S, Türkmen YE. Synthesis of acenaphthylene-fused heteroarenes and polyoxygenated benzo[ j]fluoranthenes via a Pd-catalyzed Suzuki-Miyaura/C-H arylation cascade. Beilstein J Org Chem 2024; 20:3290-3298. [PMID: 39749309 PMCID: PMC11693970 DOI: 10.3762/bjoc.20.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Acenaphthylene-fused heteroarenes with a variety of five- and six-membered heterocycles such as thiophene, furan, benzofuran, pyrazole, pyridine and pyrimidine were synthesized via an efficient Pd-catalyzed reaction cascade in good to high yields (45-90%). This cascade involves an initial Suzuki-Miyaura cross-coupling reaction between 1,8-dihalonaphthalenes and heteroarylboronic acids or esters, followed by an intramolecular C-H arylation under the same conditions to yield the final heterocyclic fluoranthene analogues. The method was further employed to access polyoxygenated benzo[j]fluoranthenes, which are all structurally relevant to benzo[j]fluoranthene-based fungal natural products. The effectiveness of our strategy was demonstrated via a concise, four-step synthesis of the tetramethoxybenzo[j]fluoranthene derivative 18, which represents a formal total synthesis of the fungal natural product bulgarein.
Collapse
Affiliation(s)
- Merve Yence
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
| | - Dilgam Ahmadli
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
| | - Damla Surmeli
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
| | - Umut Mert Karacaoğlu
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
| | - Sujit Pal
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
| | - Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye
- UNAM – National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
9
|
Satpute D, Narang G, Rohit H, Manjhi J, Kumar D, Shinde SD, Lokhande SK, Vatsa PP, Upadhyay V, Bhujbal SM, Mandoli A, Kumar D. Selective [3 + 2] C-H/C-H Alkyne Annulation via Dual (Distal) C (β, δ)-H Bond Activation Relay: A Novel Therapeutic Quinazolone-Tethered Benzofulvenes for Oral Cancer. JACS AU 2024; 4:4474-4487. [PMID: 39610749 PMCID: PMC11600166 DOI: 10.1021/jacsau.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
In contrast to proximal C-H bond activations, distal C-H bond activation is fundamentally more challenging and requires distinctly specialized directing partners or techniques. In this context, we report an unprecedented dual (distal) β-C(benzylic)-H and δ-C(aryl)-H bond activation relay protocol for the chemo-, regio-, and stereoselective construction of heterocycle-tethered benzofulvenes via [3 + 2] CH/CH-alkyne annulation under palladium catalysis. The protocol overrides the more favorable [4 + 2] CH/NH annulation and does not follow the vinylic C-H bond activation pathway. Mechanistic studies provide insight into the favored cyclopalladation of key intermediates (resulting from β-C(benzylic)-H bond cleavage) through relay δ-C(aryl)-H cleavage (vs N-H cleavage) prior to reductive elimination, which is the key to desired annulation. The synthesized new chemical entities (NCEs) constitute a novel scaffold with favorable anticancer activity against oral squamous cell carcinoma (OSCC). Detailed biomolecular studies, including RNA-sequencing and analysis, indicate that these compounds (4e and 4w) arrest the cell cycle at the S-phase and target multiple cancer hallmarks, such as the activation of apoptotic pathways and impairment of mitochondrial activity simultaneously, suggesting their chemotherapeutic potential for oral cancer by addressing the complexity and adaptability of cancer cells in chorus.
Collapse
Affiliation(s)
- Dinesh
Parshuram Satpute
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Garvita Narang
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Harshal Rohit
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar382355, Gujarat, India
| | - Jagdish Manjhi
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Divita Kumar
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sangita Dattatray Shinde
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Kumar Lokhande
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Priyanka Patel Vatsa
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar382355, Gujarat, India
| | - Vinal Upadhyay
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar382355, Gujarat, India
| | - Shivkanya Madhavrao Bhujbal
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit Mandoli
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar382355, Gujarat, India
| | - Dinesh Kumar
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER) − Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
10
|
Li J, Liu T, Liu J, Zhang C, Yang Y, Tan G, You J. Construction of acenaphthylenes via C-H activation-based tandem penta- and hexaannulation reactions. Nat Commun 2024; 15:8319. [PMID: 39333237 PMCID: PMC11436931 DOI: 10.1038/s41467-024-52652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Acenaphthylene-containing polycyclic aromatic hydrocarbons (AN-PAHs) are noteworthy structural motifs for organic functional materials due to their non-alternant electronic structure, which increases electron affinity. However, the synthesis of AN-PAHs has traditionally required multiple sequential synthetic steps, limiting structural diversity. Herein, we present a tandem C-H penta- and hexaannulation reaction of aryl alkyl ketone with acetylenedicarboxylate. This integrated approach enhances overall efficiency and selectivity, marking a significant advancement in AN-PAH synthesis. Mechanistic studies unveil an orchestrated extension of five- and six-membered rings through C-H activation-annulation and Diels-Alder reaction. Additionally, the tandem annulation reaction can be performed stepwise, further validating the proposed mechanism and increasing the structural diversity of AN-PAHs.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Tao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
11
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
12
|
Hamaguchi N, Kubota T, Yamada M, Kimura H, Tsuji H. Post-Formation of Fused Pentagonal Structure on Fjord Region of Polyaromatic Hydrocarbons under Hydrothermal Conditions. Chemistry 2024; 30:e202400987. [PMID: 38629239 DOI: 10.1002/chem.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 05/23/2024]
Abstract
This study explores the synthesis of cyclopenta-fused polyaromatic hydrocarbons (CP-PAHs) via Pt-catalyzed cyclization in water, focusing on the formation of fused pentagonal rings within heavily fused PAH frameworks. Utilizing platinum catalysts at lower temperatures (200-260 °C) in water, led to the successful synthesis of singly cyclized CP-PAHs. The reaction conditions facilitated the mono-cyclization of substrates such as dibenzo[g,p]chrysene and its isomers, yielding the desired products while suppressing the formation of bis-cyclized compounds. The use of Fe2O3 as an additive in conjunction with PtO2 was effective to suppress hydrogenation of the substrates and products. The products exhibited a redshift in UV-visible absorption and photoluminescence bands due to a decrease in the HOMO-LUMO energy gap. These findings highlight the potential of Pt-catalyzed cyclization for the controlled synthesis of CP-PAHs, with implications for various applications in materials science.
Collapse
Affiliation(s)
- Naoto Hamaguchi
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Takumi Kubota
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Masaaki Yamada
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Hikaru Kimura
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| | - Hayato Tsuji
- Department of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkaku-bashi, Kanagawa-ku, Yokohama, 221-8686, Japan
| |
Collapse
|
13
|
Fu Y, Chen X, Chen H, Liu JJ, Du Z. Palladium-Catalyzed Decarboxylative Annulation Reaction of Aryl Iodides and Methyl 2-Haloarenecarboxylates. Org Lett 2024; 26:5253-5257. [PMID: 38869448 DOI: 10.1021/acs.orglett.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A ligand-free palladium-catalyzed and norbornadiene-mediated annulation reaction of iodoarenes with methyl 2-haloarenecarboxylates is reported. The sequentially accomplished reaction comprises intermolecular C-H arylation, followed by intramolecular decarboxylative annulation, affording various valuable phenanthrenes. This reaction protocol could be expanded to triphenylene syntheses whereby norbornene was the cocatalyst. Interestingly, the decarboxylation of methyl esters was accomplished via solvent-mediated CMe-O bond cleavages.
Collapse
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xi Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hao Chen
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jia-Jia Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
14
|
Xie H, Xiao Z, Song Y, Jin K, Liu H, Zhou E, Cao J, Chen J, Ding J, Yi C, Shen X, Zuo C, Ding L. Tethered Helical Ladder-Type Aromatic Lactams. J Am Chem Soc 2024; 146:11978-11990. [PMID: 38626322 DOI: 10.1021/jacs.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.
Collapse
Affiliation(s)
- Huidong Xie
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Song
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Jin
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Liu
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiangzhao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Türkmen YE. Recent advances in the synthesis and applications of fluoranthenes. Org Biomol Chem 2024; 22:2719-2733. [PMID: 38470856 DOI: 10.1039/d4ob00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
As an important subclass of polycyclic aromatic hydrocarbons (PAHs), fluoranthenes continue to attract significant attention in synthetic organic chemistry and materials science. In this article, an overview of recent advances in the synthesis of fluoranthene derivatives along with selected applications is provided. First, methods for fluoranthene synthesis with a classification based on strategic bond disconnections are discussed. Then, the total syntheses of natural products featuring the benzo[j]fluoranthene skeleton are covered. Finally, examples of important applications of a variety of fluoranthenes are summarized.
Collapse
Affiliation(s)
- Yunus Emre Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, Ankara 06800, Türkiye.
- UNAM - National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Türkiye
| |
Collapse
|
16
|
Yang K, Li Z, Huang Y, Zeng Z. bay/ ortho-Octa-substituted Perylene: A Versatile Building Block toward Novel Polycyclic (Hetero)Aromatic Hydrocarbons. Acc Chem Res 2024; 57:763-775. [PMID: 38386871 DOI: 10.1021/acs.accounts.3c00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
ConspectusPolycyclic (hetero)aromatic hydrocarbons (PAHs) have emerged as a focal point in current interdisciplinary research, spanning the realms of chemistry, physics, and materials science. Possessing distinctive optical, electronic, and magnetic properties, these π-functional materials exhibit significant potential across diverse applications, including molecular electronic devices, organic spintronics, and biomedical functions, among others. Despite the extensive documentation of various PAHs over the decades, the efficient and precise synthesis of π-extended PAHs remains a formidable challenge, hindering their broader application. This challenge is primarily attributed to the intricate and often elusive nature of their synthesis, compounded by issues related to low solubility and unfavored stability.The development of π-building blocks that can be facilely and modularly transformed into diverse π-frameworks constitutes a potent strategy for the creation of novel PAH materials. For instance, based on the classic perylene diimide (PDI) unit, researchers such as Würthner, Wang, and Nuckolls have successfully synthesized a plethora of structurally diverse PAHs, as well as numerous other π-functional materials. However, until now the availability of such versatile building blocks is still severely limited, especially for those simultaneously having a facile preparation process, adequate solubilizing groups, favored material stability, and critically, rich possibilities for structural extension spaces.In this Account, we present an overview of our invention of a highly versatile bay-/ortho-octa-substituted perylene building block, designated as Per-4Br, for the construction of a series of novel PAH scaffolds with tailor-made structures and rich optoelectronic and magnetic properties. First, starting with a brief discussion of current challenges associated with the bottom-up synthesis of π-extended PAHs, we rationalize the key features of Per-4Br that enable facile access to new PAH molecules including its ease of large-scale preparation, favored material stability and solubility, and multiple flexible reaction sites, with a comparison to the PDI motif. Then, we showcase our rational design and sophisticated synthesis of a body of neutral or charged, closed- or open-shell, curved, or planar PAHs via controlled annulative π-extensions in different directions such as peripheral, diagonal, or multiple dimensions of the Per-4Br skeleton. In this part, the fundamental structure-property relationships between molecular conformations, electronic structures, and self-assembly behaviors of these PAHs and their unique physiochemical properties such as unusual open-shell ground states, global aromaticity, state-associated/stimuli-responsive magnetic activity, and charge transport characteristics will be emphatically elaborated. Finally, we offer our perspective on the continued advancement of π-functional materials based on Per-4Br, which, we posit, may stimulate heightened research interest in the versatile structural motifs typified by Per-4Br, consequently catalyzing further progress in the realm of organic π-functional materials.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zuhao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
17
|
Ketata N, Liu L, Ben Salem R, Doucet H. Mono or double Pd-catalyzed C-H bond functionalization for the annulative π-extension of 1,8-dibromonaphthalene: a one pot access to fluoranthene derivatives. Beilstein J Org Chem 2024; 20:427-435. [PMID: 38410779 PMCID: PMC10896227 DOI: 10.3762/bjoc.20.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
The Pd-catalyzed annulative π-extension of 1,8-dibromonaphthalene for the preparation of fluoranthenes in a single operation has been investigated. With specific arenes such as fluorobenzenes, the Pd-catalyzed double functionalization of C-H bonds yields the desired fluoranthenes. The reaction proceeds via a palladium-catalyzed direct intermolecular arylation, followed by a direct intramolecular arylation step. As the C-H bond activation of several benzene derivatives remains very challenging, the preparation of fluoranthenes from 1,8-dibromonaphthalene via Suzuki coupling followed by intramolecular C-H activation has also been investigated to provide a complementary method. Using the most appropriate synthetic route and substrates, it is possible to introduce the desired functional groups at positions 7-10 on fluoranthenes.
Collapse
Affiliation(s)
- Nahed Ketata
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Linhao Liu
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Ridha Ben Salem
- Organic chemistry laboratory, LR17ES08, Department of Chemistry, Faculty of Sciences, University of Sfax, B.P. 1171, 3038, Sfax, Tunisia
| | - Henri Doucet
- University of Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
18
|
Sala J, Capdevila L, Berga C, de Aquino A, Rodríguez L, Simon S, Ribas X. Luminescent Chiral Furanol-PAHs via Straightforward Ni-Catalysed C sp2 -F Functionalization: Mechanistic Insights into the Scholl Reaction. Chemistry 2024; 30:e202303200. [PMID: 37903141 DOI: 10.1002/chem.202303200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Here we report the stepwise synthesis of new nanographenes (NGs) and polycyclic aromatic hydrocarbons (PAHs) obtained via Scholl ring fusion applied at aromatic homologation compounds, which are obtained through one-step Ni-catalysed Csp2 -F functionalization. The latter are rapidly accessed valid precursors for the Scholl reaction, and screening of experimental conditions allowed us to describe for the first time furanol-bearing PAHs. Mechanistic insights are obtained by DFT to rationalize the formation of the furanol PAHs under moderately acidic conditions. All PAHs and NGs synthesized show moderate/weak fluorescent properties, and all PAHs crystallized show some degree of curvature and are obtained as racemic mixtures. Enantiomeric separation by chiral HPLC of one furanol-bearing PAH allowed the study of their chiroptical CD properties.
Collapse
Affiliation(s)
- Judith Sala
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Lorena Capdevila
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Cristina Berga
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Araceli de Aquino
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain), Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain), Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Catalonia, Spain
| |
Collapse
|
19
|
Liu B, Chen M, Liu X, Fu R, Zhao Y, Duan Y, Zhang L. Bespoke Tailoring of Graphenoid Sheets: A Rippled Molecular Carbon Comprising Cyclically Fused Nonbenzenoid Rings. J Am Chem Soc 2023; 145:28137-28145. [PMID: 38095317 DOI: 10.1021/jacs.3c10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The incorporation of nonbenzenoid rings into the hexagonal networks of graphenoid nanostructures is of immense importance for electronic, magnetic, and mechanical properties, but the underlying mechanisms of nonbenzenoid ring fusion are rather unexplored. Here, we report the synthesis and characterization of a rippled C84 molecular carbon, which contains 10 nonbenzenoid rings (five-, seven-, and eight-membered rings) that are contiguously fused to give a cyclic geometry. The fused nonbenzenoid rings impart high solubility, configurational stability, multiple reversible redox behaviors, unique aromaticity, and a narrow band gap to the system. Moreover, this carbon nanostructure allows for further functionalization via electrophilic substitution and metalation reactions, enabling access to finely tuned derivatives. Interestingly, both the bowl-shaped and planar conformations of the core in molecular carbon are observed in the solid state. Additionally, this molecular carbon displays ambipolar transport characteristics.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yubo Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
20
|
Vogt A, Stümpges F, Bajrami J, Baumgarten D, Millan J, Mena-Osteritz E, Bäuerle P. Tunable Regioselectivity in C-H-Activated Direct Arylation Reactions of Dithieno[3,2-b:2',3'-d]pyrroles. Chemistry 2023; 29:e202301867. [PMID: 37667450 DOI: 10.1002/chem.202301867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/06/2023]
Abstract
In this study, regioselectively controlled direct arylation of dithieno[3,2-b:2,3'-d]pyrroles (DTPs) is reported. By carefully selecting the catalytic system, Pd source, ligand, and additives, we achieved either selective N-arylation or unprecedented β-arylation and β,β'-diarylation of the DTP core through C-H activation when reacting unsubstituted H-DTP with 9-anthracenyl halides. For N-substituted DTPs, we obtained regioselective carboxylate-assisted arylation of the α-position(s). Consequently, depending on the catalytic system and substitution at the DTP nitrogen, we successfully synthesized novel regioselectively substituted DTPs, including N-aryl, rarely reported β-aryl, β,β'-diaryl, α-aryl, and α,α'-diaryl scaffolds. These compounds can be straightforwardly prepared and further functionalized for applications as organic electronic materials.
Collapse
Affiliation(s)
- Astrid Vogt
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Florian Stümpges
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jessi Bajrami
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Daniel Baumgarten
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Judith Millan
- Dpto. de Química - Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, 26006, Logroño-La Rioja, España
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
21
|
Saikia RA, Talukdar K, Pathak D, Sarma B, Thakur AJ. Utilization of Aryl(TMP)iodonium Salts for Copper-Catalyzed N-Arylation of Isatoic Anhydrides: An Avenue to Fenamic Acid Derivatives and N,N'-Diarylindazol-3-ones. J Org Chem 2023; 88:3567-3581. [PMID: 36827541 DOI: 10.1021/acs.joc.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Herein, we report a general method for copper-catalyzed N-arylation of isatoic anhydrides with unsymmetrical iodonium salts at room temperature. The developed catalytic protocol is mild and operationally simple, and aryl(TMP)iodonium trifluoroacetate is employed as the arylating partner. The methodology offers the broad applicability of both structurally and electronically diverse aryl groups from aryl(TMP)iodonium salts to access N-arylated isatoic anhydrides in moderate to excellent yields (53-92%). Moreover, the substituted isatoic anhydrides are equally compatible with the protocol too. To demonstrate the synthetic utilities of the N-arylation process, we also report an alternative approach for biologically relevant fenamic acid derivatives and N,N'-diarylindazol-3-ones in a one-pot step economical system. In addition, the scale-up synthesis of flufenamic acid is also illustrated.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Khanindra Talukdar
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Debabrat Pathak
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| |
Collapse
|
22
|
Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Saddle-shaped aza-nanographene with multiple odd-membered rings. Chem Sci 2023; 14:2353-2360. [PMID: 36873850 PMCID: PMC9977460 DOI: 10.1039/d2sc05858h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
A saddle-shaped aza-nanographene containing a central 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) has been prepared via a rationally designed four-step synthetic pathway encompassing intramolecular direct arylation, the Scholl reaction, and finally photo-induced radical cyclization. The target non-alternant, nitrogen-embedded polycyclic aromatic hydrocarbon (PAH) incorporates two abutting pentagons between four adjacent heptagons forming unique 7-7-5-5-7-7 topology. Such a combination of odd-membered-ring defects entails a negative Gaussian curvature within its surface with a significant distortion from planarity (saddle height ≈ 4.3 Å). Its absorption and fluorescence maxima are located in the orange-red region, with weak emission originating from the intramolecular charge-transfer character of a low-energy absorption band. Cyclic voltammetry measurements revealed that this stable under ambient conditions aza-nanographene underwent three fully reversible oxidation steps (two one-electron followed by one two-electron) with an exceptionally low first oxidation potential of E ox1 = -0.38 V (vs. Fc/Fc+).
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
23
|
Izquierdo‐García P, Fernández‐García JM, Perles J, Fernández I, Martín N. Electronic Control of the Scholl Reaction: Selective Synthesis of Spiro vs Helical Nanographenes. Angew Chem Int Ed Engl 2023; 62:e202215655. [PMID: 36495528 PMCID: PMC10107473 DOI: 10.1002/anie.202215655] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Scholl oxidation has become an essential reaction in the bottom-up synthesis of molecular nanographenes. Herein, we describe a Scholl reaction controlled by the electronic effects on the starting substrate (1 a, b). Anthracene-based polyphenylenes lead to spironanographenes under Scholl conditions. In contrast, an electron-deficient anthracene substrate affords a helically arranged molecular nanographene formed by two orthogonal dibenzo[fg,ij]phenanthro-[9,10,1,2,3-pqrst]pentaphene (DBPP) moieties linked through an octafluoroanthracene core. Density Functional Theory (DFT) calculations predict that electronic effects control either the first formation of spirocycles and subsequent Scholl reaction to form spironanographene 2, or the expected dehydrogenation reaction leading solely to the helical nanographene 3. The crystal structures of four of the new spiro compounds (syn 2, syn 9, anti 9 and syn 10) were solved by single crystal X-ray diffraction. The photophysical properties of the new molecular nanographene 3 reveal a remarkable dual fluorescent emission.
Collapse
Affiliation(s)
- Patricia Izquierdo‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Jesús M. Fernández‐García
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de MonocristalSIdIUniversidad Autónoma de Madridc/Francisco Tomás y Valiente, 7 Campus de Cantoblanco28049MadridSpain
| | - Israel Fernández
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
| | - Nazario Martín
- Departamento de Química Orgánica IFacultad de Ciencias QuímicasUniversidad Complutense de MadridAvd. de la Complutense, S/N28040MadridSpain
- IMDEA-NanocienciaC/Faraday, 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
24
|
Liu Z, Han W, Lan J, Sun L, Tang J, Zhang C, You J. Molecular Engineering of Chalcogen-Embedded Anthanthrenes via peri-Selective C-H Activation: Fine-Tuning of Crystal Packing for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202211412. [PMID: 36347830 DOI: 10.1002/anie.202211412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Disclosed herein is a RhCl3 -catalyzed peri-selective C-H/C-H oxidative homo-coupling of 1-substituted naphthalenes, which provides a highly efficient and streamlined approach to chalcogen-embedded anthanthrenes from readily available starting materials. Introducing O, S, and Se into the anthanthrene skeleton leads to gradually increased π-π stacking distances but significantly enhanced π-π overlaps with the growth of the hetero-atom radius. Moderate π-π distance, overlap area, and intermolecular S-S interactions endow S-embedded anthanthrene (PTT) with excellent 2D charge-transport properties. Moreover, the transformation of p-type to n-type S-embedded anthanthrenes is realized for the first time via the S-atom oxidation from PTT to PTT-O4. In organic field-effect transistor devices, PTT derivatives exhibit hole transport with mobilities up to 1.1 cm2 V-1 s-1 , while PTT-O4 shows electron transport with a mobility of 0.022 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Zheng Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Lingyan Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Junbin Tang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
25
|
Mondal K, Ghosh S, Hajra A. Transition-metal-catalyzed ortho C-H functionalization of 2-arylquinoxalines. Org Biomol Chem 2022; 20:7361-7376. [PMID: 36107011 DOI: 10.1039/d2ob01119k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, direct C-H bond activation and functionalization has become a prodigious and hot topic among synthetic organic chemists due to its step-economic nature and substantial synthetic versatility. On the other hand, quinoxaline, a fused bicycle of benzene and pyrazine, has omnipresent applications in medicinal-, industrial- and materials chemistry. The presence of the N-1 atom in 2-arylquinoxaline enables chelation formation with a metal catalyst leading to the formation of ortho-substituted products. In this review, all articles related to the ortho C-H bond functionalization of 2-arylquinoxalines published up to May 2022 are highlighted.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
26
|
Krzeszewski M, Modrzycka S, Bousquet MHE, Jacquemin D, Drąg M, Gryko DT. Green-Emitting 4,5-Diaminonaphthalimides in Activity-Based Probes for the Detection of Thrombin. Org Lett 2022; 24:5602-5607. [PMID: 35863755 PMCID: PMC9361357 DOI: 10.1021/acs.orglett.2c02320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The natures of electron-donating groups as well as the bridge between them determine the fate of substituted 1,8-naphthalimide molecules in the excited state. An activity-based probe constructed from a selective peptide sequence, a reactive warhead, and the brightest green-emitting fluorophore displays impressive performance for thrombin protease detection in a newly constructed series of 1,8-naphthalimides.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | | | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Nantes University, Nantes 44000, France
| | - Marcin Drąg
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wybrezeże Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
27
|
Liu L, Doucet H. One Pot Access to 2'‐Aryl‐2,3'‐Bithiophenes via Twofold Palladium‐Catalyzed C‐X/C‐H Coupling Associated to a Pd‐1,4‐Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Mhadhbi O, Liu L, Benzai A, Mellah B, Besbes N, Ollivier J, Cordier M, Doucet H. Palladium-catalyzed direct C5-arylation or C4,C5-diarylation of 2-alkylisothiazol-3-ones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Liu L, Huang H, Doucet H. Double C‐H bond functionalization for the annulative
π
‐extension of 1‐arylimidazoles: A palladium‐catalyzed one pot access to imidazo[1,5‐
f
]phenanthridines. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linhao Liu
- Univ Rennes, CNRS, ISCR‐UMR 6226 Rennes France
| | | | | |
Collapse
|
30
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022; 61:e202200855. [DOI: 10.1002/anie.202200855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Tingting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering Anhui Jianzhu University Hefei 230039 P. R. China
| | - Teng Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| |
Collapse
|
31
|
Lee JB, Kim GH, Jeon JH, Jeong SY, Lee S, Park J, Lee D, Kwon Y, Seo JK, Chun JH, Kang SJ, Choe W, Rohde JU, Hong SY. Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nat Commun 2022; 13:2421. [PMID: 35504905 PMCID: PMC9065069 DOI: 10.1038/s41467-022-30086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Conventional synthetic methods to yield polycyclic heteroarenes have largely relied on metal-mediated arylation reactions requiring pre-functionalised substrates. However, the functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Herein, we report a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts. Mechanistic and electron paramagnetic resonance studies provide evidence for the in situ generation of organic electron donors, while chemical trapping and electrochemical experiments implicate an iodanyl radical intermediate serving as a formal biaryl radical equivalent. This intermediate, formed by one-electron reduction of the cyclic iodonium salt, acts as the key intermediate driving the Minisci-type arylation reaction. The synthetic utility of this radical-based annulative π-extension method is highlighted by the preparation of an N-doped heptacyclic nanographene fragment through fourfold C–H arylation. The functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Here the authors show a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts.
Collapse
Affiliation(s)
- Jae Bin Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gun Ha Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ji Hwan Jeon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seo Yeong Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehyun Park
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doyoung Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jan-Uwe Rohde
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
32
|
Miyakoshi T, Niggli NE, Baudoin O. Remote Construction of N-Heterocycles via 1,4-Palladium Shift-Mediated Double C-H Activation. Angew Chem Int Ed Engl 2022; 61:e202116101. [PMID: 35143094 PMCID: PMC9303548 DOI: 10.1002/anie.202116101] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/14/2022]
Abstract
In the past years, Pd0 -catalyzed C(sp3 )-H activation provided efficient and step-economical methods to synthesize carbo- and heterocycles via direct C(sp2 )-C(sp3 ) bond formation. We report herein that a 1,4-Pd shift allows access to N-heterocycles which are difficult to build via a direct reaction. It is shown that o-bromo-N-methylanilines undergo a 1,4-Pd shift at the N-methyl group, followed by intramolecular trapping by C(sp2 )-H or C(sp3 )-H activation at another nitrogen substituent and remote C-C bond formation to generate biologically relevant isoindolines and β-lactams. The product selectivity is influenced by the employed ligand, with NHCs favoring the product of remote C-C coupling against products arising from direct C-C coupling and N-demethylation.
Collapse
Affiliation(s)
- Takeru Miyakoshi
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Nadja E. Niggli
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| | - Olivier Baudoin
- University of BaselDepartment of ChemistrySt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
33
|
Liu L, Durai M, Doucet H. Transition Metal‐Catalyzed Regiodivergent C−H Arylations of Aryl‐Substituted Azoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linhao Liu
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| | | | - Henri Doucet
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|
34
|
Gribanov PS, Vorobyeva DV, Tokarev SD, Petropavlovskikh DA, Loginov DA, Nefedov SE, Dolgushin FM, Osipov SN. Rhodium‐Catalyzed C‐H Activation/Annulation of Aryl Hydroxamates with Benzothiadiazol‐Containing Acetylenes. Access to Isoquinoline‐Bridged Donor‐Acceptor Luminophores. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pavel S. Gribanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Daria V. Vorobyeva
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Sergey D. Tokarev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Dmitry A. Petropavlovskikh
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organic Chemistry RUSSIAN FEDERATION
| | - Dmitry A. Loginov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN Organometallic Chemistry RUSSIAN FEDERATION
| | - Sergey E. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry RAS: Institut obsej i neorganiceskoj himii imeni N S Kurnakova RAN X-ray RUSSIAN FEDERATION
| | - Fedor M. Dolgushin
- Kurnakov Institute of General and Inorganic Chemistry RAS: Institut obsej i neorganiceskoj himii imeni N S Kurnakova RAN X-ray RUSSIAN FEDERATION
| | - Sergey N. Osipov
- A.N. Nesmeyanov Institute of organoelement compounds, Russian Academy of Sciences Ecological Chemistry Vavilov28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
35
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanpei Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yulin Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Tingting Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Jun Zhang
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Teng Luo
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ni
- National University of Singapore Department of Chemistry SINGAPORE
| | - Bo Li
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Sheng Xie
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zebing Zeng
- Hunan University College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, P. R. China 410082 Changsha CHINA
| |
Collapse
|
36
|
Fuchibe K, Ichikawa J, Takao G, Hakozaki T, Miura K, Urushibara Y. Construction of Substituted [4]Acene Frameworks Based on Double Cationic Cyclizations of Fluoroalkenes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0037-1610791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIn this study, 5-substituted and 5,6-disubstituted [4]acenes were synthesized by the double cationic cyclization of fluoroalkenes. (a) After being treated with Me2AlCl (1.2 equiv), 2-trifluoromethyl-1-alkenes bearing two aryl groups underwent domino Friedel–Crafts-type cyclization (two-ring construction) followed by dehydrogenation to generate 5-fluorinated [4]acenes. The same (trifluoromethyl)alkenes were treated with both Me2AlCl (1.2 equiv) and Me3Al (1.0 equiv), resulting in selective one-ring construction and the creation of bicyclic 1,1-difluoro-1-alkenes. (b) When treated with triflic acid, the bicyclic difluoroalkenes underwent regioselective protonation to generate CF2 cations; Friedel–Crafts-type cyclization of these cations provided tetracyclic ketones. The obtained ketones act as an appropriate platform for the introduction of substituents at the 5-position of [4]acenes. (c) When treated with DDQ/H+, the bicyclic difluoroalkenes underwent oxidative generation of allylic CF2 cations; Friedel–Crafts-type cyclization of these cations produced tetracyclic enones. The enones were subjected to double addition of carbanions to facilitate the introduction of two substituents at the 5- and 6-positions of dihydro[4]acenes.
Collapse
|
37
|
Wang K, Zhang J, Hu R, Liu C, Bartholome TA, Ge H, Li B. Transition-Metal-Catalyzed C–C Bond-Forming Reactions via C–H Activation for the Development of Fluorescent Materials with Practical Value. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Tyler A. Bartholome
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
38
|
Miyakoshi T, Niggli NE, Baudoin O. Remote Construction of N‐Heterocycles via 1,4‐Palladium Shift‐Mediated Double C–H Activation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takeru Miyakoshi
- Universität Basel: Universitat Basel Departement Chemie SWITZERLAND
| | | | - Olivier Baudoin
- University of Basel Department of Chemistry St. Johanns-Ring 19 4056 Basel SWITZERLAND
| |
Collapse
|
39
|
Kato M, Fukui N, Shinokubo H. Synthesis of Dibenzo[h,t]rubicene through Its Internally Dimethoxy-Substituted Precursor. CHEM LETT 2022. [DOI: 10.1246/cl.210754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaki Kato
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Norihito Fukui
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Hiroshi Shinokubo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
40
|
Srdič M, Fessner ND, Yildiz D, Glieder A, Spiertz M, Schwaneberg U. Preparative Production of Functionalized (N- and O-Heterocyclic) Polycyclic Aromatic Hydrocarbons by Human Cytochrome P450 3A4 in a Bioreactor. Biomolecules 2022; 12:biom12020153. [PMID: 35204652 PMCID: PMC8961652 DOI: 10.3390/biom12020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their N- and O-containing derivatives (N-/O-PAHs) are environmental pollutants and synthetically attractive building blocks in pharmaceuticals. Functionalization of PAHs can be achieved via C-H activation by cytochrome P450 enzymes (e.g., P450 CYP3A4) in an environmentally friendly manner. Despite its broad substrate scope, the contribution of CYP3A4 to metabolize common PAHs in humans was found to be small. We recently showcased the potential of CYP3A4 in whole-cell biocatalysis with recombinant yeast Komagataella phaffii (Pichia pastoris) catalysts for the preparative-scale synthesis of naturally occurring metabolites in humans. In this study, we aimed at exploring the substrate scope of CYP3A4 towards (N-/O)-PAHs and conducted a bioconversion experiment at 10 L scale to validate the synthetic potential of CYP3A4 for the preparative-scale production of functionalized PAH metabolites. Hydroxylated products were purified and characterized using HPLC and NMR analysis. In total, 237 mg of fluorenol and 48 mg of fluorenone were produced from 498 mg of fluorene, with peak productivities of 27.7 μmol/L/h for fluorenol and 5.9 μmol/L/h for fluorenone; the latter confirmed that CYP3A4 is an excellent whole-cell biocatalyst for producing authentic human metabolites.
Collapse
Affiliation(s)
- Matic Srdič
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Deniz Yildiz
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Markus Spiertz
- SeSaM-Biotech GmbH, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
- DWI—Leibniz Institute for Interactive Materials, 52074 Aachen, Germany;
- Correspondence: (M.S.); (U.S.)
| |
Collapse
|
41
|
Feofanov M, Akhmetov V, Amsharov K. Domino Dehydrative π-Extension: A Facile Path to Extended Perylenes and Terrylenes. Chemistry 2021; 27:17322-17325. [PMID: 34553791 PMCID: PMC9299636 DOI: 10.1002/chem.202103098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/29/2022]
Abstract
Herein, we report a new method for synthesis of extended perylenes and terrylenes. The technique is based on the cascade dehydrative π-extensions (DPEX) of aryl aldehydes, in which stepwise annulations activate previously "dormant" substituents. Two- and fourfold cyclizations of 3-aryl-biphenyl-2,2'-dicarbaldehydes offer a rapid path to unsymmetrical perylenes and elusive terrylene derivatives, respectively. DPEX of 3,3''-(phenanthrene-1,8-diyl)bis (([1,1'-biphenyl]-2,2'-dicarbaldehyde)) leads to the biradical structure, which proceeds in situ into oxidative electrocyclization at room temperature. The described domino process complements and expands DPEX approach to a large family of fused acenes and related PAHs.
Collapse
Affiliation(s)
- Mikhail Feofanov
- Department of Chemistry and Pharmacy, Organic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120Halle (Saale)Germany
| | - Vladimir Akhmetov
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120Halle (Saale)Germany
| | - Konstantin Amsharov
- Department of Chemistry and Pharmacy, Organic Chemistry IINikolaus-Fiebiger Str. 1091058ErlangenGermany
- Institute of ChemistryOrganic ChemistryMartin-Luther-University Halle-WittenbergKurt-Mothes-Strasse 206120Halle (Saale)Germany
| |
Collapse
|
42
|
Çağlılar T, Behçet A, Celepci DB, Aktaş A, Gök Y, Aygün M. Benzimidazole-functionalized PEPPSI type Pd(II)NHC complexes bearing nitrophenylethyl and hidroxyphenylethyl group: Synthesis, characterization, crystal structure and it's catalytic activity on direct arylation reaction. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Fessner ND, Grimm C, Kroutil W, Glieder A. Late-Stage Functionalisation of Polycyclic ( N-Hetero-) Aromatic Hydrocarbons by Detoxifying CYP5035S7 Monooxygenase of the White-Rot Fungus Polyporus arcularius. Biomolecules 2021; 11:1708. [PMID: 34827706 PMCID: PMC8615681 DOI: 10.3390/biom11111708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/04/2022] Open
Abstract
Functionalisation of polycyclic aromatic hydrocarbons (PAHs) and their N-heteroarene analogues (NPAHs) is a tedious synthetic endeavour that requires diverse bottom-up approaches. Cytochrome P450 enzymes of white-rot fungi were shown to participate in the fungal detoxification of xenobiotics and environmental hazards via hydroxylation of PAH compounds. In this paper, the recently discovered activity of the monooxygenase CYP5035S7 towards (N)PAHs was investigated in detail, and products formed from the substrates azulene, acenaphthene, fluorene, anthracene, and phenanthrene by whole-cell biocatalysis were isolated and characterised. The observed regioselectivity of CYP5035S7 could be explained by a combination of the substrate's electron density and steric factors influencing the substrate orientation giving insight into the active-site geometry of the enzyme.
Collapse
Affiliation(s)
- Nico D. Fessner
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| | - Christopher Grimm
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, 8010 Graz, Austria; (C.G.); (W.K.)
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, 8010 Graz, Austria;
| |
Collapse
|
44
|
Ghosh S, Laru S, Hajra A. Ortho C-H Functionalization of 2-Arylimidazo[1,2-a]pyridines. CHEM REC 2021; 22:e202100240. [PMID: 34757691 DOI: 10.1002/tcr.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
C-H activation and functionalization is quite promising in recent days as the strategy offers a go-to general method for different bond formations and hence grants synthetic versatility. At the same time, imidazopyridine, a fused bicycle of imidazole moiety with pyridine ring, has a profound impact due to its ubiquitous and prodigious application in medicinal as well as material chemistry. The presence of N-1 atom in 2-arylImidazo[1,2-a]pyridine facilitates the coordination with metal catalysts leading to the formation of ortho-substituted products. This review summarizes all the articles on ortho C-H functionalization of 2-arylImidazo[1,2-a]pyridines published till August 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
45
|
Zakis JM, Smejkal T, Wencel-Delord J. Cyclometallated complexes as catalysts for C-H activation and functionalization. Chem Commun (Camb) 2021; 58:483-490. [PMID: 34735563 DOI: 10.1039/d1cc05195d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of novel catalysts for C-H activation reactions with increased reactivity and improved selectivities has been attracting significant interest over the last two decades. More recently, promising results have been developed using tridentate pincer ligands, which form a stable C-M bond. Furthermore, based on mechanistic studies, the unique catalytic role of some metallacyclic intermediate species has been revealed. These experimental observations have subsequently translated into the rational design of advanced C-H activation catalysts in both Ru- and Ir-based systems. Recent breakthroughs in the field of C-H activation catalysed by metallacyclic intermediates are thus discussed.
Collapse
Affiliation(s)
- Janis Mikelis Zakis
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland. .,Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| | - Tomas Smejkal
- Process Chemistry Research, Syngenta Crop Protection AG, Schaffhauserstrasse 101, Stein AG 4332, Switzerland.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, Strasbourg 67087, France.
| |
Collapse
|
46
|
Chaolumen, Stepek IA, Yamada KE, Ito H, Itami K. Construction of Heptagon-Containing Molecular Nanocarbons. Angew Chem Int Ed Engl 2021; 60:23508-23532. [PMID: 33547701 DOI: 10.1002/anie.202100260] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Molecular nanocarbons containing heptagonal rings have attracted increasing interest due to their dynamic behavior, electronic properties, aromaticity, and solid-state packing. Heptagon incorporation can not only induce negative curvature within nanocarbon scaffolds, but also confer significantly altered properties through interaction with adjacent non-hexagonal rings. Despite the disclosure of several beautiful examples in recent years, synthetic strategies toward heptagon-embedded molecular nanocarbons remain relatively limited due to the intrinsic challenges of heptagon formation and incorporation into polyarene frameworks. In this Review, recent advances in solution-mediated and surface-assisted synthesis of heptagon-containing molecular nanocarbons, as well as the intriguing properties of these frameworks, will be discussed.
Collapse
Affiliation(s)
- Chaolumen
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Chemistry, Academia Sinica, Nankang, Taipei, 115, Taiwan, R.O.C
| |
Collapse
|
47
|
Hagui W, Periasamy K, Soulé J. Synthesis of 2,2’‐Bipyridines through Catalytic C−C Bond Formations from C−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wided Hagui
- Univ Rennes CNRS UMR6226 F-3500 Rennes France
| | | | | |
Collapse
|
48
|
Yang Z, Yu JT, Pan C. Recent advances in rhodium-catalyzed C(sp 2)-H (hetero)arylation. Org Biomol Chem 2021; 19:8442-8465. [PMID: 34553744 DOI: 10.1039/d1ob01190a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arylation is a common behaviour in organic synthesis for the construction of complex structures, especially the biaryls. Among those reported arylation procedures, transition-metal-catalyzed direct C(sp2)-H arylation has been rapidly developed in recent decades and has become a reliable alternative to traditional cross-coupling procedures using organometallic reagents. Great achievements in rhodium-catalyzed C(sp2)-H arylation have been witnessed during the last decade. Aryl halides, simple arenes, aryl boronic acids, arylsilanes, aryl aldehyde, aryl carboxylic acid, diazides, etc. were successfully utilized as arylating reagents under rhodium-catalyzed conditions. In this review, recent achievements in rhodium-catalyzed arylations through C(sp2)-H bond activation were summarized together with the mechanism discussions.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
49
|
Sun Q, Soulé JF. Broadening of horizons in the synthesis of CD 3-labeled molecules. Chem Soc Rev 2021; 50:10806-10835. [PMID: 34605827 DOI: 10.1039/d1cs00544h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.
Collapse
Affiliation(s)
- Qiao Sun
- Process Chemistry Enabling Technology Platform, STA Pharmaceutical, a WuxiAppTech Company (Wuxi STA), Shanghai 201507, P. R. China
| | | |
Collapse
|
50
|
Zhang J, Shi X, Doucet H. One‐Pot Synthesis of Pyrrolo[1,2‐
f
]phenanthridines From 1‐Arylpyrroles
via
Successive Palladium‐Catalyzed Direct Arylations. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian Zhang
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Xinzhe Shi
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| | - Henri Doucet
- Univ Rennes CNRS, ISCR-UMR 6226 35000 Rennes France
| |
Collapse
|