1
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Wang Y, Li C, Zheng X. Markov State Models Reveal How Folding Kinetics Influence Absorption Spectra of Foldamers. J Chem Theory Comput 2024; 20:5396-5407. [PMID: 38900275 DOI: 10.1021/acs.jctc.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Self-assembly of platinum(II) complex foldamers is an essential approach to fabricate advanced luminescent materials. However, a comprehensive understanding of folding kinetics and their absorption spectra remains elusive. By constructing Markov state models (MSMs) from large-scale molecular dynamics simulations, we reveal that two largely similar dinuclear alknylplatinum(II) terpyridine foldamers, Pt-PEG and Pt-PE with slightly different bridges, exhibit distinctive folding kinetics. Particularly, Pt-PEG bears bridge-dominant, plane-dominant, and cooperative pathways, while Pt-PE only prefers the plane-dominant pathway. Such preference originates from their difference in intrabridge electrostatic interactions, leading to contrastive distributions of metastable states. We also found that the bridge-dominant pathway for Pt-PEG becomes more favorable when lowering the temperature. Interestingly, based on the comprehensive conformation ensembles from our MSMs, we reveal the conformation-dependent absorption spectra of Pt-PEG and Pt-PE. Our theoretical spectra not only align with experimental results but also reveal the contributions of diverse conformations to the overall absorption bands explicitly, facilitating the rational design of stimuli-responsive smart luminescent molecules.
Collapse
Affiliation(s)
- Yijia Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chu Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Qin J, Wang Y, Wang T, Wang N, Xu W, Cheng L, Yu W, Yan X, Gao L, Zheng B, Wu B. Anion-Coordination Foldamer-Based Polymer Network: from Molecular Spring to Elastomer. Angew Chem Int Ed Engl 2024; 63:e202400989. [PMID: 38623921 DOI: 10.1002/anie.202400989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Foldamer is a scaled-down version of coil spring, which can absorb and release energy by conformational change. Here, polymer networks with high density of molecular springs were developed by employing anion-coordination-based foldamers as the monomer. The coiling of the foldamer is controlled by oligo(urea) ligands coordinating to chloride ions; subsequently, the folding and unfolding of foldamer conformations endow the polymer network with excellent energy dissipation and toughness. The mechanical performance of the corresponding polymer networks shows a dramatic increase from P-L2UCl (non-folding), to P-L4UCl (a full turn), and then to P-L6UCl (1.5 turns), in terms of strength (2.62 MPa; 14.26 MPa; 22.93 MPa), elongation at break (70 %; 325 %; 352 %), Young's modulus (2.69 MPa; 63.61 MPa; 141.50 MPa), and toughness (1.12 MJ/m3; 21.39 MJ/m3; 49.62 MJ/m3), respectively, which is also better than those without anion centers and the non-foldamer based counterparts. Moreover, P-L6UCl shows enhanced strength and toughness than most of the molecular-spring based polymer networks. Thus, an effective strategy for designing high-performance anion-coordination-based materials is presented.
Collapse
Affiliation(s)
- Jiangping Qin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Yongming Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Tian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Na Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, P. R. China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| |
Collapse
|
4
|
Dhamija A, Chandel D, Rath SP. Modulation of supramolecular chirality by stepwise axial coordination in a nano-size trizinc(ii)porphyrin trimer. Chem Sci 2023; 14:6032-6038. [PMID: 37293642 PMCID: PMC10246700 DOI: 10.1039/d3sc00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Herein, we report a chiral guest's triggered spring-like contraction and extension motions coupled with unidirectional twisting in a novel flexible and 'nano-size' achiral trizinc(ii)porphyrin trimer host upon step-wise formation of 1 : 1, 1 : 2, and 1 : 4 host-guest supramolecular complexes based on the stoichiometry of the diamine guests for the first time. During these processes, porphyrin CD responses have been induced, inverted, and amplified, and reduced, respectively, in a single molecular framework due to the change in the interporphyrin interactions and helicity. Also, the sign of the CD couplets is just the opposite between R and S substrates which suggests that the chirality is dictated solely by the stereographic projection of the chiral center. Interestingly, the long-range electronic communications between the three porphyrin rings generate trisignate CD signals that provide further information about molecular structures.
Collapse
Affiliation(s)
- Avinash Dhamija
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Dolly Chandel
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 India
| |
Collapse
|
5
|
Menke FS, Wicher B, Maurizot V, Huc I. Homochiral versus Heterochiral Dimeric Helical Foldamer Bundles: Chlorinated-Solvent-Dependent Self-Sorting. Angew Chem Int Ed Engl 2023; 62:e202217325. [PMID: 36625790 DOI: 10.1002/anie.202217325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Aromatic oligoamide sequences programmed to fold into stable helical conformations were designed to display a linear array of hydrogen-bond donors and acceptors at their surface. Sequences were prepared by solid-phase synthesis. Solution 1 H NMR spectroscopic studies and solid-state crystallographic structures demonstrated the formation of stable hydrogen-bond-mediated dimeric helix bundles that could be either heterochiral (with a P and an M helix) or homochiral (with two P or two M helices). Formation of the hetero- or homochiral dimers could be driven quantitatively using different chlorinated solvents-exemplifying a remarkable case of either social or narcissistic chiral self-sorting or upon imposing absolute handedness to the helices to forbid PM species.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, München, Germany
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780, Poznan, Poland
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2, Rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University of Munich, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
6
|
Menke FS, Mazzier D, Wicher B, Allmendinger L, Kauffmann B, Maurizot V, Huc I. Molecular torsion springs: alteration of helix curvature in frustrated tertiary folds. Org Biomol Chem 2023; 21:1275-1283. [PMID: 36645374 DOI: 10.1039/d2ob02109a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The first abiotic foldamer tertiary structures have been recently reported in the form of aromatic helix-turn-helix motifs based on oligo-quinolinecarboxamides held together by intramolecular hydrogen bonds. Tertiary folds were predicted by computational modelling of the hydrogen-bonding interfaces between helices and later verified by X-ray crystallography. However, the prognosis of how the conformational preference inherent to each helix influences the tertiary structure warranted further investigation. Several new helix-turn-helix sequences were synthesised in which some hydrogen bonds have been removed. Contrary to expectations, this change did not strongly destabilise the tertiary folds. On closer inspection, a new crystal structure revealed that helices adopt their natural curvature when some hydrogen bonds are missing and undergo some spring torsion upon forming the said hydrogen bonds, thus potentially giving rise to a conformational frustration. This phenomenon sheds light on the aggregation behaviour of the helices when they are not linked by a turn unit.
Collapse
Affiliation(s)
- Friedericke S Menke
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Daniela Mazzier
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Lars Allmendinger
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| | - Brice Kauffmann
- Institut Européen de Chimie et Biologie (UMS3011/US001), CNRS, Inserm, Université de Bordeaux, 2 rue Robert Escarpit, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, 2 rue Robert Escarpit, 33600 Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandstraße 5-13, 81377 Munich, Germany.
| |
Collapse
|
7
|
|
8
|
Zhou J, Sathe D, Ciccotelli A, Wang J. Synthesis and mechanochemical inertness of a Zn (
II
) bidipyrrin double helix. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Junfeng Zhou
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Andrew Ciccotelli
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering The University of Akron Akron Ohio USA
| |
Collapse
|
9
|
Meier D, Schoof B, Wang J, Li X, Walz A, Huettig A, Schlichting H, Rosu F, Gabelica V, Maurizot V, Reichert J, Papageorgiou AC, Huc I, Barth JV. Structural adaptations of electrosprayed aromatic oligoamide foldamers on Ag(111). Chem Commun (Camb) 2022; 58:8938-8941. [PMID: 35851385 DOI: 10.1039/d2cc03286d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic foldamers are promising for applications such as molecular recognition and molecular machinery. For many of these, defect free, 2D-crystaline monolayers are needed. To this end, submonolayers were prepared in ultra-high vacuum (UHV) on Ag(111) via electrospray controlled ion beam deposition (ES-CIBD). On the surface, the unfolded state is unambiguously identified by real-space single-molecule imaging using scanning tunnelling microscopy (STM) and it is found to assemble in regular structures.
Collapse
Affiliation(s)
- Dennis Meier
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Benedikt Schoof
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Jinhua Wang
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Xuesong Li
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Andreas Walz
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Annette Huettig
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Hartmut Schlichting
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | - Frédéric Rosu
- Institut Européen de Chimie et Biologie (UAR3033/US001), Univ. Bordeaux, CNRS, INSERM, F-33600 Pessac, France
| | - Valérie Gabelica
- Institut Européen de Chimie et Biologie (UAR3033/US001), Univ. Bordeaux, CNRS, INSERM, F-33600 Pessac, France.,ARNA (U1212), Univ. Bordeaux, INSERM, CNRS, F-33600 Pessac, France
| | - Victor Maurizot
- CBMN (UMR 5248), Univ. Bordeaux, CNRS, Bordeaux INP, F-33600 Pessac, France
| | - Joachim Reichert
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany.
| | | | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany. .,Cluster of Excellence e-conversion, D-85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University Munich, D-85748 Garching, Germany. .,Cluster of Excellence e-conversion, D-85748 Garching, Germany
| |
Collapse
|
10
|
Responsive Polymers with Contraction-arisen Helicity and Biomimetic Membrane-spanning Transport Functions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Miller KA, Dodo OJ, Devkota GP, Kirinda VC, Bradford KGE, Sparks J, Hartley CS, Konkolewicz D. Aromatic Foldamers as Molecular Springs in Network Polymers. Chem Commun (Camb) 2022; 58:5590-5593. [DOI: 10.1039/d2cc01223e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer networks crosslinked with spring-like ortho-phenylene (oP) foldamers were developed. NMR analysis indicated the oP crosslinkers were well-folded. Polymer networks with oP-based crosslinkers showed enhanced energy dissipation and elasticity compared...
Collapse
|