1
|
Zheng Z, Wang YS, Wang M, Zhao GH, Hao GP, Lu AH. Anomalous enhancement of humid CO 2 capture by local surface bound water in polar carbon nanopores. Nat Commun 2024; 15:8919. [PMID: 39414862 PMCID: PMC11484817 DOI: 10.1038/s41467-024-53367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Removal of confined space carbon dioxide (CO2) that is in low concentration and with coexisting water is necessary but challenging by physical adsorption method. To make the removal process effective, rendering the nanopore surface hydrophobic to resist water is the popular way. Instead of preventing water from occupying the nanopores, in this work, we propose to utilize the guest water for the spatially selective formation of local surface bound water and further induce the preferential CO2 capture. We observe an anomalous enhancement of CO2 capture performance under humid conditions over carbon nanopores with spatially selective polar sites. It is evidenced that the surface bound water is formed at non-CO2-selective areas of polar carbon nanopores, thus creating additional CO2 trapping sites. This work may inspire the design of environment tolerable materials for molecular separation and purification under harsh conditions.
Collapse
Affiliation(s)
- Zhe Zheng
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Yong-Sheng Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Miao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Guo-Hua Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, and School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| |
Collapse
|
2
|
Rubio-Gaspar A, Misturini A, Millan R, Almora-Barrios N, Tatay S, Bon V, Bonneau M, Guillerm V, Eddaoudi M, Navalón S, Kaskel S, Armentano D, Martí-Gastaldo C. Translocation and Confinement of Tetraamines in Adaptable Microporous Cavities. Angew Chem Int Ed Engl 2024; 63:e202402973. [PMID: 38644341 DOI: 10.1002/anie.202402973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.
Collapse
Affiliation(s)
- Ana Rubio-Gaspar
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Alechania Misturini
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Reisel Millan
- Instituto de Tecnología Química (ITQ), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, 46022, Spain
| | - Neyvis Almora-Barrios
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Sergio Tatay
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| | - Volodymyr Bon
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Mickaele Bonneau
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group, Advanced Membranes and Porous Materials Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Stefan Kaskel
- Technische Universität Dresden, Department of Inorganic Chemistry, Dresden, 01069, Germany
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Carlos Martí-Gastaldo
- Functional Inorganic Materials Team, Instituto de Ciencia Molecular (ICMol), Universidad de València, c/Catedrático José Beltrán, 2., Paterna, 46980, Spain
| |
Collapse
|
3
|
Liao Q, Yuan Y, Cao J. One-step synthesis of hydroxyl-functionalized ionic hyper-cross-linked polymers with high surface areas for efficient CO 2 capture and fixation. J Colloid Interface Sci 2024; 665:958-968. [PMID: 38569312 DOI: 10.1016/j.jcis.2024.03.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Ionic liquid-based functional materials have attracted significant attention for their distinctive structure in the field of CO2 capture and conversion. In this work, a series of hydroxyl-functionalized ionic hyper-cross-linked polymers are prepared through a one-step Friedel-Crafts reaction involving hypoxanthine (HX) and benzimidazole (BI) as the monomers, along with various halohydrocarbon crosslinking agents. These polymers demonstrate a high specific surface area (558-1480 m2·g-1), well-developed microporous structure, and unique ion sites, enabling them to exhibit remarkable and reversible CO2 adsorption properties. Particularly noteworthy is their CO2 adsorption capacity, which surpasses that of similar ionic polymers documented in the literature, reaching 157.5 mg·g-1 at 273 K and 1 bar. Additionally, these polymers function as recyclable catalysts in the cycloaddition reaction of CO2 and epoxides, enabling the conversion of CO2 into cyclic carbonates with yields of up to 99 % even without a co-catalyst. Mechanism investigation reveals that the introduction of hydroxyl groups in the polymer is the key to improving catalytic activity through a synergistic catalytic effect. This research provides a novel concept for designing ionic functional materials with capabilities in both CO2 adsorption and catalytic activity.
Collapse
Affiliation(s)
- Quanlan Liao
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Yuan
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jianxin Cao
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Engineering Research Center of Efficient Utilization for Industrial Waste, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
4
|
Cai S, Yu L, Huo E, Ren Y, Liu X, Chen Y. Adsorption and Diffusion Properties of Functionalized MOFs for CO 2 Capture: A Combination of Molecular Dynamics Simulation and Density Functional Theory Calculation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6869-6877. [PMID: 38498690 DOI: 10.1021/acs.langmuir.3c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The capture of carbon dioxide (CO2) from fuel gases is a significant method to solve the global warming problem. Metal-organic frameworks (MOFs) are considered to be promising porous materials and have shown great potential for CO2 adsorption and separation applications. However, the adsorption and diffusion mechanisms of CO2 in functionalized MOFs from the perspective of binding energies are still not clear. Actually, the adsorption and diffusion mechanisms can be revealed more intuitively by the binding energies of CO2 with the functionalized MOFs. In this work, a combination of molecular dynamics simulation and density functional theory calculation was performed to study CO2 adsorption and diffusion mechanisms in five different functionalized isoreticular MOFs (IRMOF-1 through -5), considering the influence of functionalized linkers on the adsorption capacity of functionalized MOFs. The results show that the CO2 uptake is determined by two elements: the binding energy and porosity of MOFs. The porosity of the MOFs plays a dominant role in IRMOF-5, resulting in the lowest level of CO2 uptake. The potential of mean force (PMF) of CO2 is strongest at the CO2/functionalized MOFs interface, which is consistent with the maximum CO2 density distribution at the interface. IRMOF-3 with the functionalized linker -NH2 shows the highest CO2 uptake due to the higher porosity and binding energy. Although IRMOF-5 with the functionalized linker -OC5H11 exhibits the lowest diffusivity of CO2 and the highest binding energy, it shows the lowest CO2 uptake. Accordingly, among the five simulated functionalized MOFs, IRMOF-3 is an excellent CO2 adsorbent and IRMOF-5 can be used to separate CO2 from other gases, which will be helpful for the designing of CO2 capture devices. This work will contribute to the design and screening of materials for CO2 adsorption and separation in practical applications.
Collapse
Affiliation(s)
- Shouyin Cai
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225127, P.R. China
| | - Erguang Huo
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| | - Yunxiu Ren
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
- College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590, P.R. China
| | - Xiangdong Liu
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Yongping Chen
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, P.R. China
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| |
Collapse
|
5
|
Ozkan M, Narappa AB, Namboodiri T, Chai Y, Babu M, Jennings JS, Gao Y, Tasneem S, Lam J, Talluri KR, Shang R, Ozkan CS, Watkins JM. Forging a sustainable sky: Unveiling the pillars of aviation e-fuel production for carbon emission circularity. iScience 2024; 27:109154. [PMID: 38524375 PMCID: PMC10960063 DOI: 10.1016/j.isci.2024.109154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In 2021, airplanes consumed nearly 250 million tons of fuel, equivalent to almost 10.75 exajoules. Anticipated growth in air travel suggests increasing fuel consumption. In January 2022, demand surged by 82.3%, as per the International Air Transport Association. In tackling aviation emissions, governments promote synthetic e-fuels to cut carbon. Sustainable aviation fuel (SAF) production increased from 1.9 million to 15.8 million gallons in six years. Although cost of kerosene produced with carbon dioxide from direct air capture (DAC) is several times higher than the cost of conventional jet fuel, its projected production cost is expected to decrease from $104-$124/MWh in 2030 to $60-$69/MWh in 2050. Advances in DAC technology, decreasing cost of renewable electricity, and improvements in FT technology are reasons to believe that the cost of e-kerosene will decline. This review describes major e-kerosene synthesis methods, incorporating DAC, hydrogen from water electrolysis, and hydrocarbon synthesis via the Fischer-Tropsch process. The importance of integrating e-fuel production with renewable energy sources and sustainable feedstock utilization cannot be overstated in achieving carbon emission circularity. The paper explores the concept of power-to-liquid (PtL) pathways, where renewable energy is used to convert renewable feedstocks into e-fuels. In addition to these technological improvements, carbon pricing, government subsidies, and public procurement are several policy initiatives that could help to reduce the cost of e-kerosene. Our review provides a comprehensive guide to the production pathways, technological advancements, and carbon emission circularity aspects of aviation e-fuels. It will provide a valuable resource for researchers, policymakers, industry stakeholders, and the general public interested in transitioning to a sustainable aviation industry.
Collapse
Affiliation(s)
- Mihrimah Ozkan
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA
- Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, USA
| | - Anvaya B. Narappa
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA
| | - Thrayesh Namboodiri
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Yijian Chai
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA
| | - Matheshwaran Babu
- Department of Computer Science, University of California, Riverside, Riverside, CA, USA
| | - Joan S.E. Jennings
- Department of Computer Science, University of California, Riverside, Riverside, CA, USA
| | - Yingfan Gao
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA
| | - Sameeha Tasneem
- Department of Computer Science, University of California, Riverside, Riverside, CA, USA
| | - Jason Lam
- Department of Computer Science, University of California, Riverside, Riverside, CA, USA
| | - Kamal R. Talluri
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ruoxu Shang
- Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, USA
| | - Cengiz S. Ozkan
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
- Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, USA
| | - Jordyn M. Watkins
- Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
6
|
Li W, Liu X, Yu X, Zhang B, Ji C, Shi Z, Zhang L, Liu Y. Three Robust Isoreticular Metal-Organic Frameworks with High-Performance Selective CO 2 Capture and Separation. Inorg Chem 2023; 62:18248-18256. [PMID: 37870805 DOI: 10.1021/acs.inorgchem.3c02851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Based on the hard-soft acid base (HSAB) theory, three robust isoreticular metal-organic frameworks (MOFs) with nia topology were successfully synthesized by solvothermal reaction {[In3O(BHB)(H2O)3]NO3·3DMA (JLU-MOF110(In)), [Fe3O(BHB)(H2O)3]NO3 (JLU-MOF110(Fe)), and [Fe2NiO(BHB)(H2O)3] (JLU-MOF110(FeNi)) (DMA = N,N-dimethylacetamide, H6BHB = 4,4″-benzene-1,3,5-triyl-hexabenzoic acid)}. Both JLU-MOF110(In) and JLU-MOF110(Fe) are cationic frameworks, and their BET surface areas are 301 and 446 m2/g, respectively. By modification of the components of metal clusters, JLU-MOF110(FeNi) features a neutral framework, and the BET surface area is increased up to 808 m2/g. All three MOF materials exhibit high chemical and thermal stability. JLU-MOF110(In) remains stable for 24 h at pH values ranging from 1 to 11, while JLU-MOF110(Fe) and JLU-MOF110(FeNi) persist to be stable for 24 h at pH from 1 to 12. JLU-MOF110(In) exhibits thermal stability up to 350 °C, whereas JLU-MOF110(Fe) and JLU-MOF(FeNi) can be stable up to 300 °C. Thanks to the microporous cage-based structure and abundant open metal sites, JLU-MOF110(In), JLU-MOF110(Fe), and JLU-MOF110(FeNi) have excellent CO2 capture capacity (28.0, 51.5, and 99.6 cm3/g, respectively, under 298 K and 1 bar). Interestingly, the ideal adsorption solution theory results show that all three MOFs exhibit high separation selectivity toward CO2 over N2 (35.2, 43.2, and 43.2 for CO2/N2 = 0.15/0.85) and CO2 over CH4 (14.4, 11.5, and 10.1 for CO2/CH4 = 0.5/0.5) at 298 K and 1 bar. Thus, all three MOFs are potential candidates for CO2 capture and separation. Among them, JLU-MOF110(FeNi) displays the best separation potential, as revealed by dynamic column breakthrough experiments.
Collapse
Affiliation(s)
- Wen Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- Sinochem Holdings Corporation Ltd., Beijing 100031, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhaohui Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Rim G, Priyadarshini P, Song M, Wang Y, Bai A, Realff MJ, Lively RP, Jones CW. Support Pore Structure and Composition Strongly Influence the Direct Air Capture of CO 2 on Supported Amines. J Am Chem Soc 2023; 145:7190-7204. [PMID: 36972200 PMCID: PMC10080690 DOI: 10.1021/jacs.2c12707] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/29/2023]
Abstract
A variety of amine-impregnated porous solid sorbents for direct air capture (DAC) of CO2 have been developed, yet the effect of amine-solid support interactions on the CO2 adsorption behavior is still poorly understood. When tetraethylenepentamine (TEPA) is impregnated on two different supports, commercial γ-Al2O3 and MIL-101(Cr), they show different trends in CO2 sorption when the temperature (-20 to 25 °C) and humidity (0-70% RH) of the simulated air stream are varied. In situ IR spectroscopy is used to probe the mechanism of CO2 sorption on the two supported amine materials, with weak chemisorption (formation of carbamic acid) being the dominant pathway over MIL-101(Cr)-supported TEPA and strong chemisorption (formation of carbamate) occurring over γ-Al2O3-supported TEPA. Formation of both carbamic acid and carbamate species is enhanced over the supported TEPA materials under humid conditions, with the most significant enhancement observed at -20 °C. However, while equilibrium H2O sorption is high at cold temperatures (e.g., -20 °C), the effect of humidity on a practical cyclic DAC process is expected to be minimal due to slow H2O uptake kinetics. This work suggests that the CO2 capture mechanisms of impregnated amines can be controlled by adjusting the degree of amine-solid support interaction and that H2O adsorption behavior is strongly affected by the properties of the support materials. Thus, proper selection of solid support materials for amine impregnation will be important for achieving optimized DAC performance under varied deployment conditions, such as cold (e.g., -20 °C) or ambient temperature (e.g., 25 °C) operations.
Collapse
Affiliation(s)
- Guanhe Rim
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Pranjali Priyadarshini
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Yuxiang Wang
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Andrew Bai
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Matthew J. Realff
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Ryan P. Lively
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular
Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
8
|
Chen B, Xie H, Shen L, Xu Y, Zhang M, Zhou M, Li B, Li R, Lin H. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO 2 Separation Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207313. [PMID: 36709424 DOI: 10.1002/smll.202207313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Membrane-based carbon dioxide (CO2 ) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2 /CH4 , CO2 /H2 , CO2 /N2 , and CO2 /He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.
Collapse
Affiliation(s)
- Binghong Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongli Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yanchao Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
9
|
Chen L, Yang F. Experimental investigation of the dehumidification and decarburization performance of metal-organic frameworks in solid adsorption air conditioning. RSC Adv 2023; 13:808-824. [PMID: 36686946 PMCID: PMC9809989 DOI: 10.1039/d2ra07209b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Solid adsorption air conditioning systems use solid adsorption materials to co-adsorb water vapor and carbon dioxide, allowing the humidity and carbon dioxide concentration in the air-conditioned room to be controlled. Exploring the co-adsorption mechanism of H2O and CO2 is essential for the screening of adsorbent materials, system design, and system optimization in solid adsorption air conditioning systems. A fixed-bed adsorption-desorption device was built, and the dynamic adsorption properties of three MIL adsorbent materials MIL-101(Cr), MIL-101(Fe), and MIL-100(Fe) for co-adsorption of H2O and CO2 were studied. The results showed that all three MIL adsorbent materials are capable of performing co-adsorption of H2O and CO2 and meet the requirements of solid adsorption air conditioning systems. MIL-101(Cr) is recommended for solid adsorption air conditioners where dehumidification is the main focus, while MIL-100(Fe) is recommended for solid adsorption air conditioners where carbon removal is the main focus.
Collapse
Affiliation(s)
- Liu Chen
- Energy School, Xi'an University of Science and TechnologyYanta RoadXi'an 710054P. R. China+86 29 85583143+86 29 85583143
| | - Famei Yang
- Energy School, Xi'an University of Science and TechnologyYanta RoadXi'an 710054P. R. China+86 29 85583143+86 29 85583143
| |
Collapse
|
10
|
Zhao R, Hao S, Guo Z, Cao L, Li B, Liu Y, Ren Y, Van der Bruggen B, Wu H, Jiang Z. Porous vermiculite membrane with high permeance for carbon capture. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Chi S, Ye Y, Zhao X, Liu J, Jin J, Du L, Mi J. Porous molecular sieve polymer composite with high CO2 adsorption efficiency and hydrophobicity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Confinement effects facilitate low-concentration carbon dioxide capture with zeolites. Proc Natl Acad Sci U S A 2022; 119:e2211544119. [PMID: 36122236 PMCID: PMC9522334 DOI: 10.1073/pnas.2211544119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Direct air capture (DAC) of CO2 from the atmosphere is being pursued to aid in mitigating global CO2 amounts and possibly reaching net negative emissions by 2050. We report that a type of commercialized zeolite, mordenite (MOR)-type zeolite, is a promising adsorbent for DAC because of its high CO2 capacity, high selectivity, fast kinetics, low isosteric heat of adsorption, and high stability under simulated DAC conditions. We demonstrate that the primary site for CO2 adsorption in the MOR-type zeolite is located at the side-pocket and that its size (i.e., the confinement effect) is the key to the performance by comparing its adsorption behavior to those obtained from a number of other zeolites with varying pore space sizes. Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure–performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to ∼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Collapse
|
13
|
Zhu X, Xie W, Wu J, Miao Y, Xiang C, Chen C, Ge B, Gan Z, Yang F, Zhang M, O'Hare D, Li J, Ge T, Wang R. Recent advances in direct air capture by adsorption. Chem Soc Rev 2022; 51:6574-6651. [PMID: 35815699 DOI: 10.1039/d1cs00970b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant progress has been made in direct air capture (DAC) in recent years. Evidence suggests that the large-scale deployment of DAC by adsorption would be technically feasible for gigatons of CO2 capture annually. However, great efforts in adsorption-based DAC technologies are still required. This review provides an exhaustive description of materials development, adsorbent shaping, in situ characterization, adsorption mechanism simulation, process design, system integration, and techno-economic analysis of adsorption-based DAC over the past five years; and in terms of adsorbent development, affordable DAC adsorbents such as amine-containing porous materials with large CO2 adsorption capacities, fast kinetics, high selectivity, and long-term stability under ultra-low CO2 concentration and humid conditions. It is also critically important to develop efficient DAC adsorptive processes. Research and development in structured adsorbents that operate at low-temperature with excellent CO2 adsorption capacities and kinetics, novel gas-solid contactors with low heat and mass transfer resistances, and energy-efficient regeneration methods using heat, vacuum, and steam purge is needed to commercialize adsorption-based DAC. The synergy between DAC and carbon capture technologies for point sources can help in mitigating climate change effects in the long-term. Further investigations into DAC applications in the aviation, agriculture, energy, and chemical industries are required as well. This work benefits researchers concerned about global energy and environmental issues, and delivers perspective views for further deployment of negative-emission technologies.
Collapse
Affiliation(s)
- Xuancan Zhu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wenwen Xie
- Institute of Technical Thermodynamics, Karlsruhe Institute of Technology, 76131, Germany
| | - Junye Wu
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yihe Miao
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China
| | - Chengjie Xiang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Chunping Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Bingyao Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Zhuozhen Gan
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Fan Yang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Man Zhang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Dermot O'Hare
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Jia Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, No. 3 Yinlian Road, Shanghai 201306, China.,Jiangmen Laboratory for Carbon and Climate Science and Technology, No. 29 Jinzhou Road, Jiangmen, 529100, China.,The Hong Kong University of Science and Technology (Guangzhou), No. 2 Huan Shi Road South, Nansha, Guangzhou, 511458, China
| | - Tianshu Ge
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ruzhu Wang
- Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
14
|
Abstract
Climate change calls for adaptation of negative emission technologies such as direct air capture (DAC) of carbon dioxide (CO2) to lower the global warming impacts of greenhouse gases. Recently, elevated global interests to the DAC technologies prompted implementation of new tax credits and new policies worldwide that motivated the existing DAC companies and prompted the startup boom. There are presently 19 DAC plants operating worldwide, capturing more than 0.01 Mt CO2/year. DAC active plants capturing in average 10,000 tons of CO2 annually are still in their infancy and are expensive. DAC technologies still need to improve in three areas: 1) Contactor, 2) Sorbent, and 3) Regeneration to drive down the costs. Technology-based economic development in all three areas are required to achieve <$100/ton of CO2 which makes DAC economically viable. Current DAC cost is about 2-6 times higher than the desired cost and depends highly on the source of energy used. In this review, we present the current status of commercial DAC technologies and elucidate the five pillars of technology including capture technologies, their energy demand, final costs, environmental impacts, and political support. We explain processing steps for liquid and solid carbon capture technologies and indicate their specific energy requirements. DAC capital and operational cost based on plant power energy sources, land and water needs of DAC are discussed in detail. At 0.01 Mt CO2/year capture capacity, DAC alone faces a challenge to meet the rates of carbon capture described in the goals of the Paris Agreement with 1.5-2°C of global warming. However, DAC may partially help to offset difficult to avoid annual emissions from concrete (∼8%), transportation (∼24%), iron-steel industry (∼11%), and wildfires (∼0.8%).
Collapse
Affiliation(s)
- Mihrimah Ozkan
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
- Department of Chemistry, University of California Riverside, Riverside, CA, USA
- Materials Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Saswat Priyadarshi Nayak
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| | - Anthony D. Ruiz
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| | - Wenmei Jiang
- Department of Electrical and Computer Engineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
15
|
Harvey JP, Courchesne W, Vo MD, Oishi K, Robelin C, Mahue U, Leclerc P, Al-Haiek A. Greener reactants, renewable energies and environmental impact mitigation strategies in pyrometallurgical processes: A review. MRS ENERGY & SUSTAINABILITY : A REVIEW JOURNAL 2022; 9:212-247. [PMID: 36569468 PMCID: PMC9766879 DOI: 10.1557/s43581-022-00042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023]
Abstract
Abstract Metals and alloys are among the most technologically important materials for our industrialized societies. They are the most common structural materials used in cars, airplanes and buildings, and constitute the technological core of most electronic devices. They allow the transportation of energy over great distances and are exploited in critical parts of renewable energy technologies. Even though primary metal production industries are mature and operate optimized pyrometallurgical processes, they extensively rely on cheap and abundant carbonaceous reactants (fossil fuels, coke), require high power heating units (which are also typically powered by fossil fuels) to calcine, roast, smelt and refine, and they generate many output streams with high residual energy content. Many unit operations also generate hazardous gaseous species on top of large CO2 emissions which require gas-scrubbing and capture strategies for the future. Therefore, there are still many opportunities to lower the environmental footprint of key pyrometallurgical operations. This paper explores the possibility to use greener reactants such as bio-fuels, bio-char, hydrogen and ammonia in different pyrometallurgical units. It also identifies all recycled streams that are available (such as steel and aluminum scraps, electronic waste and Li-ion batteries) as well as the technological challenges associated with their integration in primary metal processes. A complete discussion about the alternatives to carbon-based reduction is constructed around the use of hydrogen, metallo-reduction as well as inert anode electrometallurgy. The review work is completed with an overview of the different approaches to use renewable energies and valorize residual heat in pyrometallurgical units. Finally, strategies to mitigate environmental impacts of pyrometallurgical operations such as CO2 capture utilization and storage as well as gas scrubbing technologies are detailed. This original review paper brings together for the first time all potential strategies and efforts that could be deployed in the future to decrease the environmental footprint of the pyrometallurgical industry. It is primarily intended to favour collaborative work and establish synergies between academia, the pyrometallurgical industry, decision-makers and equipment providers. Graphical abstract Highlights A more sustainable production of metals using greener reactants, green electricity or carbon capture is possible and sometimes already underway. More investments and pressure are required to hasten change. Discussion Is there enough pressure on the aluminum and steel industries to meet the set climate targets?The greenhouse gas emissions of existing facilities can often be partly mitigated by retrofitting them with green technologies, should we close plants prematurely to build new plants using greener technologies?Since green or renewable resources presently have limited availability, in which sector should we use them to maximize their benefits?
Collapse
Affiliation(s)
- Jean-Philippe Harvey
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - William Courchesne
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - Minh Duc Vo
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - Kentaro Oishi
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - Christian Robelin
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - Ugo Mahue
- Department of Chemical Engineering, Centre for Research in Computational Thermochemistry (CRCT), Polytechnique Montréal, Station Downtown, Box 6079, Montreal, QC H3C 3A7 Canada
| | - Philippe Leclerc
- R & D and engineering services, LAh Services G.P., Montreal, QC H4N 0A7 Canada
| | - Alexandre Al-Haiek
- R & D and engineering services, LAh Services G.P., Montreal, QC H4N 0A7 Canada
| |
Collapse
|
16
|
Fu D, Davis ME. Carbon dioxide capture with zeotype materials. Chem Soc Rev 2022; 51:9340-9370. [DOI: 10.1039/d2cs00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the application of zeotype materials for the capture of CO2 in different scenarios, the critical parameters defining the adsorption performances, and the challenges of zeolitic adsorbents for CO2 capture.
Collapse
Affiliation(s)
- Donglong Fu
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Mail Code 210-41, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Xu X, Li Z, Huang H, Jing X, Duan C. A Novel Copper Metal-Organic Framework Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Amines. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00678b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rapid increase in atmospheric carbon dioxide has resulted in the greenhouse effect. Hence, carbon dioxide capture and further fixation into valuable chemical products are particularly important for reducing atmospheric...
Collapse
|