1
|
Fang X, Hu Y, Yang G, Shi W, Lu S, Cao Y. Improving physicochemical properties and pharmacological activities of ternary co-amorphous systems. Eur J Pharm Biopharm 2022; 181:22-35. [PMID: 36283631 DOI: 10.1016/j.ejpb.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
The formation of co-amorphous by combining low molecular weight compounds with drugs is a relatively new technology in the pharmaceutical field, which can significantly improve the solubility, dissolution, and stability of poorly water-soluble drugs. However, in our previous studies, the binary co-amorphous system of andrographolide-oxymatrine (AP-OMT) was found to have obvious recrystallization and poor dissolution behavior. Therefore, in this study, we designed three stable ternary co-amorphous systems to improve the physicochemical properties of the binary co-amorphous system of AP-OMT. The ternary co-amorphous systems were prepared with AP, OMT, and trans-cinnamic acid (CA), p-hydroxycinnamic acid (pHCA), or ferulic acid (FA). Intermolecular hydrogen bonds were confirmed by spectroscopy and molecular dynamics simulation. Solubility studies showed that the solubility of the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA was significantly increased compared with that of crystalline AP. Dissolution experiments suggested that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA exhibited better dissolution behavior without significant recrystallization compared to the binary co-amorphous AP-OMT. The stability study confirmed that the ternary co-amorphous system of AP-OMT-CA/pHCA/FA maintained good physical stability in the long term for 18 months. In addition, pharmacological experiments revealed that the ternary co-amorphous systems of AP-OMT-CA/pHCA/FA have an excellent safety profile and its anti-Alzheimer's disease effects are significantly improved compared to that of the binary co-amorphous systems of AP-OMT. Moreover, this study also found that reducing the pKa value of low molecular weight co-formers would affect the intermolecular interactions and improve the solubility of drugs in the ternary co-amorphous systems. In conclusion, we have successfully prepared ternary co-amorphous systems of AP-OMT-CA/pHCA/FA by amorphization technique, which improves the physicochemical properties of the binary co-amorphous systems of AP-OMT and anti-Alzheimer's disease activity in the Caenorhabditis elegans model. The mechanism for the influence of the pKa value of the co-formers on the physicochemical properties of the ternary co-amorphous system was preliminarily explored, providing theoretical guidance for the development of the ternary co-amorphous system.
Collapse
Affiliation(s)
- Xiaoping Fang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yi Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guangyi Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Shenzhen Bao'an Traditional Chinese Medical Hospital, Shenzhen 518000, China
| | - Wenfeng Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Yan Cao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
2
|
Wesholowski J, Prill S, Berghaus A, Thommes M. Inline UV/Vis spectroscopy as PAT tool for hot-melt extrusion. Drug Deliv Transl Res 2019; 8:1595-1603. [PMID: 29327264 DOI: 10.1007/s13346-017-0465-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hot-melt extrusion on co-rotating twin screw extruders is a focused technology for the production of pharmaceuticals in the context of Quality by Design. Since it is a continuous process, the potential for minimizing product quality fluctuation is enhanced. A typical application of hot-melt extrusion is the production of solid dispersions, where an active pharmaceutical ingredient (API) is distributed within a polymer matrix carrier. For this dosage form, the product quality is related amongst others to the drug content. This can be monitored on- or inline as critical quality attribute by a process analytical technology (PAT) in order to meet the specific requirements of Quality by Design. In this study, an inline UV/Vis spectrometer from ColVisTec was implemented in an early development twin screw extruder and the performance tested in accordance to the ICH Q2 guideline. Therefore, two API (carbamazepine and theophylline) and one polymer matrix (copovidone) were considered with the main focus on the quantification of the drug load. The obtained results revealed the suitability of the implemented PAT tool to quantify the drug load in a typical range for pharmaceutical applications. The effort for data evaluation was minimal due to univariate data analysis, and in combination with a measurement frequency of 1 Hz, the system is sufficient for real-time data acquisition.
Collapse
Affiliation(s)
- Jens Wesholowski
- Institute of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, 44227, Dortmund, Germany
| | - Sebastian Prill
- Institute of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, 44227, Dortmund, Germany
| | - Andreas Berghaus
- ColVisTec AG, Max-Planck-Straße 3, 12489, Berlin-Adlershof, Germany
| | - Markus Thommes
- Institute of Solids Process Engineering, TU Dortmund University, Emil-Figge-Straße 68, 44227, Dortmund, Germany.
| |
Collapse
|
3
|
Maniruzzaman M, Ross SA, Islam MT, Scoutaris N, Nair A, Douroumis D. Increased dissolution rates of tranilast solid dispersions extruded with inorganic excipients. Drug Dev Ind Pharm 2017; 43:947-957. [DOI: 10.1080/03639045.2017.1287716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mohammed Maniruzzaman
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Steven A. Ross
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Muhammad Tariqul Islam
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Nikolaos Scoutaris
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| | - Arun Nair
- Fuji Chemical Industry Co, Ltd, International Business Division, Minato-Ward, Tokyo, Japan
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent, UK
| |
Collapse
|
4
|
Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm 2016; 107:16-31. [DOI: 10.1016/j.ejpb.2016.06.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/24/2022]
|
5
|
Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW. A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm 2016; 499:175-185. [PMID: 26768722 DOI: 10.1016/j.ijpharm.2016.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022]
Abstract
The main aim of the research focused on the production of hot-melt extrusion (HME) formulations with increased dissolution properties of albendazole (ABZ). Therefore, HME was applied as a continuous manufacturing technique to produce amorphous solid dispersions of the poorly water soluble drug ABZ combined with the polymer matrix polyvinylpyrrolidone PVP K12. HME formulations of ABZ-PVP K12 comprised a drug content of 1%, 5% and 10% w/w. The main analytical characterisation techniques used were scanning electron microscopy (SEM), micro-computed tomography (μ-CT), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC) and dissolution profile studies. The application of SEM, XRPD and DSC evidenced drug physical transformation from crystalline to amorphous state and therefore, the achievement of an amorphous solid dispersion. The introduction of a novel technique, μ-CT, to characterise the internal structure of these materials revealed key information regarding materials distribution and void content. Dissolution profile studies evidenced a high increase in drug release profile compared to pure ABZ. These promising results can lead to a great enhancement of the oral bioavailability of ABZ dosage forms. Therefore, HME is a potential continuous manufacturing technique to overcome ABZ poor solubility properties and lead to a significant increase in the therapeutic effect.
Collapse
Affiliation(s)
- Laura Martinez-Marcos
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom.
| | - Dimitrios A Lamprou
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom.
| | - Roy T McBurney
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom
| | - Gavin W Halbert
- EPSRC Centre for Innovative Manufacturing in Continuous Manufacturing and Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161Cathedral Street, G4 0RE Glasgow, United Kingdom
| |
Collapse
|
6
|
Islam MT, Scoutaris N, Maniruzzaman M, Moradiya HG, Halsey SA, Bradley MSA, Chowdhry BZ, Snowden MJ, Douroumis D. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur J Pharm Biopharm 2015. [PMID: 26209124 DOI: 10.1016/j.ejpb.2015.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of the work reported herein was to implement process analytical technology (PAT) tools during hot melt extrusion (HME) in order to obtain a better understanding of the relationship between HME processing parameters and the extruded formulations. For the first time two in-line NIR probes (transmission and reflectance) have been coupled with HME to monitor the extrusion of the water insoluble drug indomethacin (IND) in the presence of Soluplus (SOL) or Kollidon VA64 hydrophilic polymers. In-line extrusion monitoring of sheets, produced via a specially designed die, was conducted at various drug/polymer ratios and processing parameters. Characterisation of the extruded transparent sheets was also undertaken by using DSC, XRPD and Raman mapping. Analysis of the experimental findings revealed the production of molecular solutions where IND is homogeneously blended (ascertained by Raman mapping) in the polymer matrices, as it acts as a plasticizer for both hydrophilic polymers. PCA analysis of the recorded NIR signals showed that the screw speed used in HME affects the recorded spectra but not the homogeneity of the embedded drug in the polymer sheets. The IND/VA64 and IND/SOL extruded sheets displayed rapid dissolution rates with 80% and 30% of the IND being released, respectively within the first 20min.
Collapse
Affiliation(s)
- Muhammad T Islam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Nikolaos Scoutaris
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mohammed Maniruzzaman
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Hiren G Moradiya
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Sheelagh A Halsey
- ThermoFisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, UK
| | - Michael S A Bradley
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Babur Z Chowdhry
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Martin J Snowden
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK.
| |
Collapse
|