1
|
Huang Q, Meng G, Zhang X, Fang Z, Yan Y, Liao B, Zhang L, Chen P. Natural manganese sand activates sodium hypochlorite to enhance ionic organic contaminants removal: Optimization, modeling, and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161310. [PMID: 36603642 DOI: 10.1016/j.scitotenv.2022.161310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Although sodium hypochlorite acting as an oxidant has been investigated for the role it plays in the degradation of organic contaminants, little attention has been paid to its activation and efficient utilization. In this study, natural manganese sand (NMS) was verified to be effective for activation of sodium hypochlorite (NaClO). Due to the generation of O2-, the removal efficiency of ionic organic contaminants in NMS/NaClO system was 1.9-4.1 times higher than that in NMS or NaClO alone. Hence, NMS activated NaClO system performed ~96.6 % contaminants removal efficiency at a wide pH range (pH 5-9). Kinetic modeling yielded that the NMS dosage was more important than NaClO dosage. Long-term stability was observed in the presence of various salts (bicarbonate, sulfate, phosphate, and chloride). Characterization results revealed that electron transfer among NMS, NaClO, and organic contaminants was responsible for NaClO activation. Then NaClO-based Fenton-like process was proposed by tracing the degradation intermediates of methyl orange (MO) and generations of reactive oxygen species in the MO/NMS/NaClO system. This study presents the potential of NMS to activate NaClO and enhance ionic organic contaminants removal from aquatic environments.
Collapse
Affiliation(s)
- Qian Huang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guangyuan Meng
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinwan Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhengnan Fang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Yan
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Benren Liao
- Shanghai No. 4 Reagent & H.V. Chemical Co. Ltd., Shanghai 200940, China; Shanghai No. 4 Reagent Chemical Co., Ltd., Shanghai 201512, China
| | - Lehua Zhang
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Ran R, Deng S, Zhang G, Wang G, Li C. Gradient Concentration Control of Active Components on the Industrial Cs-P/γ-Al 2O 3 Catalyst. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ran Ran
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu61004, Sichuan, China
- University of Chinese Academy of Sciences, Beijing100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing100190, China
| | - Senlin Deng
- University of Chinese Academy of Sciences, Beijing100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing100190, China
| | - Guoliang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing100190, China
| | - Gongying Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu61004, Sichuan, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Chunshan Li
- University of Chinese Academy of Sciences, Beijing100049, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing100190, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou516003, Guangdong, China
| |
Collapse
|
3
|
Oxidative Desulfurization of Real High-Sulfur Diesel Using Dicarboxylic Acid/H2O2 System. Processes (Basel) 2022. [DOI: 10.3390/pr10112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
From the perspective of pollution, economics, and product quality, it is very important to find an efficient way to minimize the sulfur content of petroleum products such as gasoline and diesel. In this work, an effective, inexpensive, and simple oxidative desulfurization system based on hydrogen peroxide activation by three dicarboxylic acids which have different carbon numbers (i.e., malonic acid, succinic acid, and glutaric acid) was utilized for the desulfurization of a real diesel sample with high organic sulfur-containing compounds. The desulfurization process was based on the oxidation of sulfur compounds in diesel fuel to the corresponding sulfones followed by acetonitrile extraction of the sulfones. To select the optimal experimental conditions, the effects of several parameters, including temperature, catalyst H2O2 dosages, and treatment time, were investigated. The results showed that the developed system was effective in desulfurizing real diesel fuel with high sulfur content. With an initial total sulfur content of about 8104 mg/L, the desulfurization rate from the diesel sample reached more than 90.9, 88.9, and 93%, using malonic acid, succinic acid, and glutaric acid, respectively. The optimum parameters such as reaction temperature, reaction time, H2O2 (50 w/w%), and carboxylic acid dosage for oxidative desulfurization were determined to be 95 °C, 6 h, 10 mL, and 0.6 g, respectively. The conversion of refractory sulfur compounds into extractable sulfone forms was verified using gas chromatography. Moreover, the kinetic study confirmed that the designed reaction system follows the pseudo-first-order kinetic model.
Collapse
|
4
|
Yaseen M, Subhan S, Khan K, Farooq MU, Ahmad W, Seema H, Naz R, Subhan F. Deep desulfurization of real fuel oils over tin-impregnated graphene oxide-hydrogen peroxide and formic acid catalyst-oxidant system. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2131429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Sidra Subhan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Saidu Sharif, Pakistan
| | - Muhammad Usman Farooq
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences & Technology, Topi, Pakistan
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Humaira Seema
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Rafia Naz
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Fazle Subhan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
5
|
Preparation of Ca- and Na-Modified Activated Clay as a Promising Heterogeneous Catalyst for Biodiesel Production via Transesterification. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
For efficient biodiesel production, an acid-activated clay (AC) modified by calcium hydroxide and sodium hydroxide (CaNa/AC) was prepared as a catalyst. CaNa/AC and Na/AC were characterized by Hammett indicators, CO2-TPD, FT-IR, XRD, and N2 adsorption techniques. The influence of catalyst dose, reaction temperature, methanol/oil molar ratio, and reaction time on the transesterification of Jatropha oil was studied. Due to the introduction of calcium, CaNa/AC displayed a higher activity and stability, thereby achieving an oil conversion of 97% under the optimal reaction conditions and maintaining over 80% activity after five successive reuses. The reaction was accelerated as the temperature rose, and the apparent activation energy of CaNa/AC was 75.6 kJ·mol−1. The enhanced biodiesel production by CaNa/AC was ascribed to the increase in active sites and higher basic strength. This study presents a facile and practical method for producing biodiesel on large-scale operation.
Collapse
|