1
|
Tacsi K, Stoffán G, Galata DL, Pusztai É, Gyürkés M, Nagy B, Szilágyi B, Nagy ZK, Marosi G, Pataki H. Improvement of drug processability in a connected continuous crystallizer system using formulation additive. Int J Pharm 2023; 635:122725. [PMID: 36804519 DOI: 10.1016/j.ijpharm.2023.122725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
Continuous crystallization in the presence of polymer additives is a promising method to omit some drug formulation steps by improving the technological and also pharmacological properties of crystalline active ingredients. Accordingly, this study focuses on developing an additive-assisted continuous crystallization process using polyvinylpyrrolidone in a connected ultrasonicated plug flow crystallizer and an overflow mixed suspension mixed product removal (MSMPR) crystallizer system. We aimed to improve the flowability characteristics of small, columnar primary plug flow crystallizer-produced acetylsalicylic acid crystals as a model drug by promoting their agglomeration in MSMPR crystallizer with polyvinylpyrrolidone. The impact of the cooling antisolvent crystallization process parameters (temperature, polymer amount, total flow rate) on product quality and quantity was investigated. Finally, a spatially segmented antisolvent dosing method was also evaluated. The developed technology enabled the manufacture of purified, constant quality products in a short startup period, even with an 85% yield. We found that a higher polymer amount (7.5-14%) could facilitate agglomeration resulting in "good" flowability without altering the favorable dissolution characteristics of the primary particles.
Collapse
Affiliation(s)
- Kornélia Tacsi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - György Stoffán
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Éva Pusztai
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Botond Szilágyi
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
2
|
Abstract
How do you get into flow? We trained in flow chemistry during postdoctoral research and are now applying it in new areas: materials chemistry, crystallization, and supramolecular synthesis. Typically, when researchers think of "flow", they are considering predominantly liquid-based organic synthesis; application to other disciplines comes with its own challenges. In this Perspective, we highlight why we use and champion flow technologies in our fields, summarize some of the questions we encounter when discussing entry into flow research, and suggest steps to make the transition into the field, emphasizing that communication and collaboration between disciplines is key.
Collapse
Affiliation(s)
- Andrea Laybourn
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Karen Robertson
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Anna G. Slater
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
3
|
Gupta D, Nyande BW, Thomas KM, Li F, Mak AT, Lakerveld R. Induced-Charge Electroosmosis for Rapid Mixing of Reactive Precipitation Systems to Obtain Small and Uniform Particles. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Nyande BW, Thomas KM, Takarianto AA, Lakerveld R. Control of crystal size distribution in batch protein crystallization by integrating a gapped Kenics static mixer to flexibly produce seed crystals. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|