1
|
Dilipkumar A, Shukla A, Zhao D, Farooq S. Adsorption Equilibrium and Transport of CO 2, N 2, and H 2O in CALF-20. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10940-10952. [PMID: 40279447 DOI: 10.1021/acs.langmuir.5c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CALF-20 is a hydrophobic MOF adsorbent demonstrated at a pilot scale for the capture of CO2 from wet flue gas using a direct steam heating TSA cycle. It has been synthesized following a published protocol, and its XRD structure matches known results. Both crystals and particles are used to study single-component adsorption and the diffusion of CO2, N2, and H2O by using gravimetric, volumetric, and dynamic column breakthrough methods. Temperature and relative humidity ranges explored are 25-150 °C and 0-95% in helium, respectively, up to 1 bar pressure. A steam-helium mixture is used above 100 °C. Small pressure steps are used to determine (approximately) locally constant transport parameters. The Sips-Henry isotherm is the best-fit model, which correctly captures the dependence of the isosteric heat of adsorption on adsorbent loading, especially the complex shape for H2O. The pore diffusion model captures crystal uptakes. The micropore diffusivity is an increasing function of the adsorbed-phase concentration up to a certain level before showing reversal, which is consistent with the Darken equation, a function of isotherm curvature. Gas/moisture transport in CALF-20 particles is controlled by Knudsen diffusion in the macropores. The key features observed from the single-component adsorption and diffusion studies and their impact on process studies are demonstrated by applying them to predict breakthrough results.
Collapse
Affiliation(s)
- Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Anshu Shukla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Shamsuzzaman Farooq
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
2
|
Regadera-Macías AM, Morales-Torres S, Pastrana-Martínez LM, Maldonado-Hódar FJ. Optimizing filters of activated carbons obtained from biomass residues for ethylene removal in agro-food industry devices. ENVIRONMENTAL RESEARCH 2024; 248:118247. [PMID: 38253198 DOI: 10.1016/j.envres.2024.118247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
A series of adsorbents (activated carbons, ACs) were synthesized by physical and chemical activation of olive stones (OS) and their textural and chemical characteristics determined by complementary techniques such as N2 and CO2 physisorption, pH of the point zero of charge (pHPZC), HRSEM or XPS. Samples with a wide range of physicochemical properties were obtained by fitting the activation procedure. The performance of these adsorbents in filters working under dynamic conditions was studied by determining the corresponding breakthrough curves for the ethylene removal. The physicochemical transformations of OS during activation were related with the adsorptive performance of derivative ACs. Results were compared to those obtained using commercial carbons, in particular ACs, carbon black or carbon fibers, in order to identify the properties of these materials on influencing the adsorptive performance. In general, ACs from OS perform better than the commercial samples, being also easily regenerated and properly used during consecutive adsorption cycles. CO2-activation showed to be the best synthesis option, leading to granular ACs with a suitable microporosity and surface chemistry. These results could favour the integration of this type of inexpensive materials on devices for the preservation of climacteric fruits, in a clear example of circular economy by reusing the agricultural residues.
Collapse
Affiliation(s)
- Ana M Regadera-Macías
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| | - Sergio Morales-Torres
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| | - Luisa M Pastrana-Martínez
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain.
| | - Francisco J Maldonado-Hódar
- NanoTech - Nanomaterials and Sustainable Chemicals Technologies, Department of Inorganic Chemistry, Faculty of Science, University of Granada, Avda. Fuente Nueva, s/n, ES18071, Granada, Spain
| |
Collapse
|
3
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
4
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
5
|
Zhang X, Hu Y, Lyu H, Li J, Zhou T. Multi-level computational screening of anion-pillared metal-organic frameworks for propane and propene separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Zhang L, Zheng Q, Zhang Z, Li H, Liu X, Sun J, Wang R. Application of Metal-Organic Frameworks (MOFs) in Environmental Biosystems. Int J Mol Sci 2023; 24:2145. [PMID: 36768466 PMCID: PMC9916450 DOI: 10.3390/ijms24032145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Metal-organic frameworks (MOFs) are crystalline materials that are formed by self-assembling organic linkers and metal ions with large specific areas and pore volumes. Their chemical tunability, structural diversity, and tailor-ability make them adaptive to decorate many substrate materials, such as biomass-derived carbon materials, and competitive in many environmental biosystems, such as biofuel cells, bioelectrocatalysts, microbial metal reduction, and fermentation systems. In this review, we surmised the recent progress of MOFs and MOF-derived materials and their applications in environmental biosystems. The behavior of MOFs and MOF-derived materials in different environmental biosystems and their influences on performance are described. The inherent mechanisms will guide the rational design of MOF-related materials and lead to a better understanding of their interaction with biocomponents.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, School of Life Science and Technology, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Qingwen Zheng
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, School of Life Science and Technology, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Zheng Zhang
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, School of Life Science and Technology, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Huidong Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, School of Life Science and Technology, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Xue Liu
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
| | - Jinzhi Sun
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, School of Life Science and Technology, Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiwen Wang
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150001, China
| |
Collapse
|
7
|
Cao X, Zhang Z, He Y, Xue W, Huang H, Zhong C. Machine-Learning-Aided Computational Study of Covalent Organic Frameworks for Reversed C 2H 6/C 2H 4 Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaohao Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Yanjing He
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
8
|
Massoumılari Ş, Doğancı M, Velioğlu S. Unveiling the Potential of
MXenes
for
H
2
Purification and
CO
2
Capture as an Emerging Family of Nanomaterials. AIChE J 2022. [DOI: 10.1002/aic.17837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Şirin Massoumılari
- Institute of Nanotechnology Gebze Technical University Gebze, 41400 Kocaeli Turkey
| | - Melih Doğancı
- Institute of Nanotechnology Gebze Technical University Gebze, 41400 Kocaeli Turkey
| | - Sadiye Velioğlu
- Institute of Nanotechnology Gebze Technical University Gebze, 41400 Kocaeli Turkey
| |
Collapse
|