1
|
Liu X, Lu J, Fang X, Zhou J, Chen Q. Complexation modelling and oxidation mechanism of organic pollutants in cotton pulp black liquor during iron salt precipitation and electrochemical treatment. CHEMOSPHERE 2022; 308:136374. [PMID: 36088962 DOI: 10.1016/j.chemosphere.2022.136374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Removal behavior of organic pollutants such as lignin in cotton pulp black liquor (CPBL) was investigated in precipitation followed by electrochemical oxidation (EO) using FeCl3, Fe2(SO4)3, FeCl2 and FeSO4 as precipitants, electrolyte and catalysts. Based on comparison of precipitation efficacy of iron salts, spectroscopic techniques, thermodynamic equilibrium calculations and molecular dynamics (MD) simulations were used to provide insight into the interaction between iron cations and lignin. The results showed that FeCl3 achieved the highest removal of chemical oxygen demand (COD, 76.05%), UV254 (69.21%) and lignin (78.28%). Iron cationic complexation with lignin was identified as the key mechanism in precipitation. Fe3+ was more active in binding to organic ligands mainly due to charge effect compared to Fe2+. The strong Fe-sulphate coordination affected the complexation with lignin. MD simulations showed the formation of inner sphere complexes of iron cations with deprotonated carboxyl and hydroxyl groups via bidentate and monodentate coordination. The removal efficiency of electrochemical oxidation (EO) as a post-treatment of the precipitation was dependent on iron salts. Removals of COD, UV254 and color can achieve 98.88%, 98.9% and 99.97% by FeCl3 precipitation and EO processes. The effluent reached the primary discharge standard specified in Integrated Wastewater Discharge Standard of China (GB8978-1996). FeCl3 demonstrated significant advantages in the removal of organic pollutants from cotton pulp black liquor in the combined process of precipitation and electrochemical treatment and may have practical application potential.
Collapse
Affiliation(s)
- Xiaochen Liu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jun Lu
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaofeng Fang
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| | - Juan Zhou
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China
| | - Quanyuan Chen
- School of Environment Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|