1
|
Xie R, Tan D, Liu B, Xiao G, Gong F, Zhang Q, Qi L, Zheng S, Yuan Y, Yang Z, Chen Y, Fei J, Xu D. Acute respiratory distress syndrome (ARDS): from mechanistic insights to therapeutic strategies. MedComm (Beijing) 2025; 6:e70074. [PMID: 39866839 PMCID: PMC11769712 DOI: 10.1002/mco2.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome of acute hypoxic respiratory failure caused by diffuse lung inflammation and edema. ARDS can be precipitated by intrapulmonary factors or extrapulmonary factors, which can lead to severe hypoxemia. Patients suffering from ARDS have high mortality rates, including a 28-day mortality rate of 34.8% and an overall in-hospital mortality rate of 40.0%. The pathophysiology of ARDS is complex and involves the activation and dysregulation of multiple overlapping and interacting pathways of systemic inflammation and coagulation, including the respiratory system, circulatory system, and immune system. In general, the treatment of inflammatory injuries is a coordinated process that involves the downregulation of proinflammatory pathways and the upregulation of anti-inflammatory pathways. Given the complexity of the underlying disease, treatment needs to be tailored to the problem. Hence, we discuss the pathogenesis and treatment methods of affected organs, including 2019 coronavirus disease (COVID-19)-related pneumonia, drowning, trauma, blood transfusion, severe acute pancreatitis, and sepsis. This review is intended to provide a new perspective concerning ARDS and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongli Xie
- Department of General SurgeryRuijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dan Tan
- Department of General SurgeryRuijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Boke Liu
- Department of UrologyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Guohui Xiao
- Department of General Surgery, Pancreatic Disease CenterRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Fangchen Gong
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiyao Zhang
- Department of RadiologySödersjukhuset (Southern Hospital)StockholmSweden
| | - Lei Qi
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexasUSA
| | - Sisi Zheng
- Department of RadiologyThe First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yuanyang Yuan
- Department of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhitao Yang
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Ying Chen
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Jian Fei
- Department of General Surgery, Pancreatic Disease CenterRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dan Xu
- Department of EmergencyRuijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Gao MZ, Zeng JY, Chen XJ, Shi L, Hong FY, Lin M, Luo JW, Chen H. Dimethyl fumarate ameliorates oxidative stress-induced acute kidney injury after traumatic brain injury by activating Keap1-Nrf2/HO-1 signaling pathway. Heliyon 2024; 10:e32377. [PMID: 38947486 PMCID: PMC11214498 DOI: 10.1016/j.heliyon.2024.e32377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Acute kidney injury (AKI) frequently emerges as a consequential non-neurological sequel to traumatic brain injury (TBI), significantly contributing to heightened mortality risks. The intricate interplay of oxidative stress in the pathophysiology of TBI underscores the centrality of the Keap1-Nrf2/HO-1 signaling pathway as a pivotal regulator in this context. This study endeavors to elucidate the involvement of the Keap1-Nrf2/HO-1 pathway in modulating oxidative stress in AKI subsequent to TBI and concurrently explore the therapeutic efficacy of dimethyl fumarate (DMF). A rat model of TBI was established via the Feeney free-fall method, incorporating interventions with varying concentrations of DMF. Assessment of renal function ensued through measurements of serum creatinine and neutrophil gelatinase-associated lipocalin. Morphological evaluation of renal pathology was conducted employing quantitative hematoxylin and eosin staining. The inflammatory response was scrutinized by quantifying interleukin (IL)-6, IL-1β, and tumor necrosis factor-α levels. Oxidative stress levels were discerned through quantification of malondialdehyde and superoxide dismutase. The apoptotic cascade was examined via the terminal deoxynucleotidyl transferase dUTP deletion labeling assay. Western blotting provided insights into the expression dynamics of proteins affiliated with the Keap1-Nrf2/HO-1 pathway and apoptosis. The findings revealed severe kidney injury, heightened oxidative stress, inflammation, and apoptosis in the traumatic brain injury model. Treatment with DMF effectively reversed these changes, alleviating oxidative stress by activating the Keap1-Nrf2/HO-1 signaling pathway, ultimately conferring protection against AKI. Activating Keap1-Nrf2/HO-1 signaling pathway may be a potential therapeutic strategy for attenuating oxidative stress-induced AKI after TBI.
Collapse
Affiliation(s)
- Mei-zhu Gao
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jing-yi Zeng
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xue-jing Chen
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Lan Shi
- Department of Intensive Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-yuan Hong
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Miao Lin
- Department of Nephrology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Jie-wei Luo
- Department of Traditional Chinese Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Han Chen
- The Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou, Fujian, 350001, China
| |
Collapse
|
3
|
Cheng J, Tang N, Hu C, Zhou Y. Brain first-lung protective timing mechanical ventilation strategies for severe acute brain injury and acute respiratory distress syndrome: A case report. Asian J Surg 2024; 47:2782-2784. [PMID: 38388278 DOI: 10.1016/j.asjsur.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Affiliation(s)
- Jiangli Cheng
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Ningchang Tang
- Respiratory Therapy, West China School of Medicine, Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Yongfang Zhou
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
4
|
Figueiredo R, Castro C, Fernandes JB. Nursing Interventions to Prevent Secondary Injury in Critically Ill Patients with Traumatic Brain Injury: A Scoping Review. J Clin Med 2024; 13:2396. [PMID: 38673667 PMCID: PMC11051360 DOI: 10.3390/jcm13082396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Traumatic brain injury is a prevalent health issue with significant social and economic impacts. Nursing interventions are crucial in preventing secondary injury and improving patient prognosis. This scoping seeks to map and analyze the existing scientific evidence on nursing interventions aimed at preventing secondary injuries in critically ill patients with traumatic brain injury. Methods: The review was conducted according to Arksey and O'Malley's methodological framework. The electronic databases Pubmed, MEDLINE Complete, CINAHL Complete, Nursing & Allied Health Collection: Comprehensive, Cochrane Central Register of Controlled Trials, and Cochrane Clinical Answers were consulted in May 2023. We included articles published in English and Portuguese between 2010 and 2023. Results: From the initial search, 277 articles were identified, with 15 meeting the inclusion criteria for the review. Nursing interventions for TBI patients include neuromonitoring, therapeutics, analytical surveillance, professional training, and family support. Nurses play a crucial role in detecting neurological changes, administering treatments, monitoring metabolic markers, training staff, and involving families. These interventions aim to prevent secondary injury and improve patient outcomes. Conclusions: By prioritizing evidence-based practice and utilizing innovative technologies, nurses enhance TBI patient care and contribute to overall well-being.
Collapse
Affiliation(s)
- Rita Figueiredo
- Department of Nursing, Almada-Seixal Local Health Unit, 2805-267 Almada, Portugal;
- Nurs * Lab, Caparica, 2829-511 Almada, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| | - Cidália Castro
- Nurs * Lab, Caparica, 2829-511 Almada, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| | - Júlio Belo Fernandes
- Nurs * Lab, Caparica, 2829-511 Almada, Portugal;
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Caparica, 2829-511 Almada, Portugal
| |
Collapse
|
5
|
Crippa IA, Vincent JL, Zama Cavicchi F, Pozzebon S, Gaspard N, Maenhout C, Creteur J, Taccone FS. Estimated Cerebral Perfusion Pressure and Intracranial Pressure in Septic Patients. Neurocrit Care 2024; 40:577-586. [PMID: 37420137 DOI: 10.1007/s12028-023-01783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, Gruppo San Donato, Corso Europa 7, 24046, Zingonia, Italy.
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Federica Zama Cavicchi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Selene Pozzebon
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Christelle Maenhout
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
6
|
Ziaka M, Exadaktylos A. Pathophysiology of acute lung injury in patients with acute brain injury: the triple-hit hypothesis. Crit Care 2024; 28:71. [PMID: 38454447 PMCID: PMC10918982 DOI: 10.1186/s13054-024-04855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
It has been convincingly demonstrated in recent years that isolated acute brain injury (ABI) may cause severe dysfunction of peripheral extracranial organs and systems. Of all potential target organs and systems, the lung appears to be the most vulnerable to damage after ABI. The pathophysiology of the bidirectional brain-lung interactions is multifactorial and involves inflammatory cascades, immune suppression, and dysfunction of the autonomic system. Indeed, the systemic effects of inflammatory mediators in patients with ABI create a systemic inflammatory environment ("first hit") that makes extracranial organs vulnerable to secondary procedures that enhance inflammation, such as mechanical ventilation (MV), surgery, and infections ("second hit"). Moreover, accumulating evidence supports the knowledge that gut microbiota constitutes a critical superorganism and an organ on its own, potentially modifying various physiological functions of the host. Furthermore, experimental and clinical data suggest the existence of a communication network among the brain, gastrointestinal tract, and its microbiome, which appears to regulate immune responses, gastrointestinal function, brain function, behavior, and stress responses, also named the "gut-microbiome-brain axis." Additionally, recent research evidence has highlighted a crucial interplay between the intestinal microbiota and the lungs, referred to as the "gut-lung axis," in which alterations during critical illness could result in bacterial translocation, sustained inflammation, lung injury, and pulmonary fibrosis. In the present work, we aimed to further elucidate the pathophysiology of acute lung injury (ALI) in patients with ABI by attempting to develop the "double-hit" theory, proposing the "triple-hit" hypothesis, focused on the influence of the gut-lung axis on the lung. Particularly, we propose, in addition to sympathetic hyperactivity, blast theory, and double-hit theory, that dysbiosis and intestinal dysfunction in the context of ABI alter the gut-lung axis, resulting in the development or further aggravation of existing ALI, which constitutes the "third hit."
Collapse
Affiliation(s)
- Mairi Ziaka
- Clinic for Geriatric Medicine, Center for Geriatric Medicine and Rehabilitation, Kantonsspital Baselland, Bruderholz, Switzerland.
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland.
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Fawley JA, Tignanelli CJ, Werner NL, Kasotakis G, Mandell SP, Glass NE, Dries DJ, Costantini TW, Napolitano LM. American Association for the Surgery of Trauma/American College of Surgeons Committee on Trauma clinical protocol for management of acute respiratory distress syndrome and severe hypoxemia. J Trauma Acute Care Surg 2023; 95:592-602. [PMID: 37314843 PMCID: PMC10545067 DOI: 10.1097/ta.0000000000004046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 06/15/2023]
Abstract
LEVEL OF EVIDENCE Therapeutic/Care Management: Level V.
Collapse
|
8
|
Wahlster S, Sharma M, Taran S, Town JA, Stevens RD, Cinotti R, Asehoune K, Pelosi P, Robba C. Utilization of mechanical power and associations with clinical outcomes in brain injured patients: a secondary analysis of the extubation strategies in neuro-intensive care unit patients and associations with outcome (ENIO) trial. Crit Care 2023; 27:156. [PMID: 37081474 PMCID: PMC10120226 DOI: 10.1186/s13054-023-04410-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND There is insufficient evidence to guide ventilatory targets in acute brain injury (ABI). Recent studies have shown associations between mechanical power (MP) and mortality in critical care populations. We aimed to describe MP in ventilated patients with ABI, and evaluate associations between MP and clinical outcomes. METHODS In this preplanned, secondary analysis of a prospective, multi-center, observational cohort study (ENIO, NCT03400904), we included adult patients with ABI (Glasgow Coma Scale ≤ 12 before intubation) who required mechanical ventilation (MV) ≥ 24 h. Using multivariable log binomial regressions, we separately assessed associations between MP on hospital day (HD)1, HD3, HD7 and clinical outcomes: hospital mortality, need for reintubation, tracheostomy placement, and development of acute respiratory distress syndrome (ARDS). RESULTS We included 1217 patients (mean age 51.2 years [SD 18.1], 66% male, mean body mass index [BMI] 26.3 [SD 5.18]) hospitalized at 62 intensive care units in 18 countries. Hospital mortality was 11% (n = 139), 44% (n = 536) were extubated by HD7 of which 20% (107/536) required reintubation, 28% (n = 340) underwent tracheostomy placement, and 9% (n = 114) developed ARDS. The median MP on HD1, HD3, and HD7 was 11.9 J/min [IQR 9.2-15.1], 13 J/min [IQR 10-17], and 14 J/min [IQR 11-20], respectively. MP was overall higher in patients with ARDS, especially those with higher ARDS severity. After controlling for same-day pressure of arterial oxygen/fraction of inspired oxygen (P/F ratio), BMI, and neurological severity, MP at HD1, HD3, and HD7 was independently associated with hospital mortality, reintubation and tracheostomy placement. The adjusted relative risk (aRR) was greater at higher MP, and strongest for: mortality on HD1 (compared to the HD1 median MP 11.9 J/min, aRR at 17 J/min was 1.22, 95% CI 1.14-1.30) and HD3 (1.38, 95% CI 1.23-1.53), reintubation on HD1 (1.64; 95% CI 1.57-1.72), and tracheostomy on HD7 (1.53; 95%CI 1.18-1.99). MP was associated with the development of moderate-severe ARDS on HD1 (2.07; 95% CI 1.56-2.78) and HD3 (1.76; 95% CI 1.41-2.22). CONCLUSIONS Exposure to high MP during the first week of MV is associated with poor clinical outcomes in ABI, independent of P/F ratio and neurological severity. Potential benefits of optimizing ventilator settings to limit MP warrant further investigation.
Collapse
Affiliation(s)
- Sarah Wahlster
- Neurocritical Care, Department of Neurology, Harborview Medical Center, University of Washington, Box 359702, 325 9th Avenue, WA 98104-2499 Seattle, USA
- Department of Neurological Surgery, Harborview Medical Center, University of Washington, Seattle, USA
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, USA
| | - Monisha Sharma
- Department of Global Health, University of Washington, Seattle, USA
| | - Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON Canada
| | - James A. Town
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, USA
| | - Robert D. Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Raphaël Cinotti
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes Université, Nantes, France
| | - Karim Asehoune
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes Université, Nantes, France
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, 10 Largo Rosanna Benzi, 16100 Genoa, Italy
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. RECENT FINDINGS Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. SUMMARY Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
Collapse
Affiliation(s)
- Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara Robba
- IRCCS, Policlinico San Martino
- Department of Surgical Sciences and Diagnostic Integrated, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Wu J, Gao W, Zhang H. Development of acute lung injury or acute respiratory distress syndrome after subarachnoid hemorrhage, predictive factors, and impact on prognosis. Acta Neurol Belg 2023:10.1007/s13760-023-02207-z. [PMID: 36922484 DOI: 10.1007/s13760-023-02207-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 03/17/2023]
Abstract
Acute lung injury or acute respiratory distress syndrome (ALI/ARDS) is a common complication after aneurysmal subarachnoid hemorrhage (aSAH), and is associated with worse neurologic outcomes and longer hospitalization. However, the effect of ALI/ARDS in SAH has not been well elucidated. The purpose of this study was to determine the incidence of ALI/ARDS in a cohort of patients with SAH and to determine the risk factors for ALI/ARDS and their impact on patient prognosis. We performed a retrospective analysis of 167 consecutive patients with aSAH enrolled. ALI/ARDS patients were rigorously adjudicated using North American-European Consensus Conference definition. Regression analyses were used to test the risk factors for ALI/ARDS in patients with SAH. A total of 167 patients fulfilled the inclusion criteria, and 27% patients (45 of 167) developed ALI. Among all 45 ALI patients, 33 (20%, 33 of 167) patients met criteria for ARDS. On multivariate analysis, elderly patients, lower glasgow coma scale (GCS), higher Hunt-Hess grade, higher simplified acute physiology score (SAPS) II score, pre-existing pneumonia, gastric aspiration, hypoxemia, and tachypnea were the strongest risk factor for ALI/ARDS. Patients with ALI/ARDS showed worse clinical outcomes measured at 30 days. Development of ALI/ARDS was associated with a statistically significant increasing the odds of tracheostomy and hospital complications, and increasing duration of mechanical ventilation, intensive care unit (ICU) length and hospitalization stay. Development of ALI/ARDS is a severe complication of SAH and is associated with a poor clinical outcome, and further studies should focus on both prevention and management strategies specific to SAH-associated ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China
| | - Hongrong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215026, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Premachandra A, Wang X, Saad M, Moussawy S, Rouzier R, Latouche A, Albi-Feldzer A. Erector spinae plane block versus thoracic paravertebral block for the prevention of acute postsurgical pain in breast cancer surgery: A prospective observational study compared with a propensity score-matched historical cohort. PLoS One 2022; 17:e0279648. [PMID: 36584053 PMCID: PMC9803227 DOI: 10.1371/journal.pone.0279648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Preventing acute postsurgical pain (PSP) following breast cancer surgery is a major issue. Thoracic paravertebral block (TPVB) has been widely studied for this indication. Erector spinae plane block (ESPB) has been assumed to be effective. We aimed to compare the efficacy and safety of ESPB over TPVB in preventing acute PSP. METHODS In this prospective observational study, 120 patients admitted for unilateral major oncologic breast surgery received T2/T3 ESPB (ropivacaine 0.75%, 0.35 ml.kg-1), and 102 were analysed. Then, the ESPB cohort was compared to a TPVB cohort from the experimental arm of a randomized controlled study with the same protocol (NCT02408393) using propensity score matching analysis. The primary outcome was the need for morphine consumption in the PACU. Secondary outcomes were the morphine total dose, the incidence of ESPB and TPVB complications, and discontinuous visual analogue scale measurement trends at rest and at mobilization in the 24 hours after surgery. RESULTS A total of 102 patients completed the study between December 2018 and August 2019. Propensity score matching formed 94 matched pairs. The proportion of morphine titration in the PACU was higher in the ESPB group than in the TPVB group (74.5% vs. 41.5%, p<0.001), with a between-group difference of 33.0% (95% CI [19.3%, 46.7%]). No ESPB-related complications were observed. CONCLUSION ESPB is less effective in preventing morphine consumption in the PACU than TPVB. Our findings do not support the use of ESPB as the first-line regional anaesthesia for major breast cancer surgery. Randomized trials comparing ESPB and TPVB are needed.
Collapse
Affiliation(s)
- Antoine Premachandra
- Department of Anaesthesiology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Xiaomeng Wang
- INSERM, U900, Institut Curie, PSL Research University, Saint-Cloud, France
- Department of Research and Development, Sanofi, Chilly Mazarin, France
| | - Mary Saad
- Department of Anaesthesiology, Institut Curie, PSL Research University, Saint-Cloud, France
- INSERM, U900, Institut Curie, PSL Research University, Saint-Cloud, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Sahar Moussawy
- Department of Anaesthesiology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Roman Rouzier
- INSERM, U900, Institut Curie, PSL Research University, Saint-Cloud, France
- Department of Surgical Oncology, Centre François Baclesse, Caen, France
| | - Aurélien Latouche
- INSERM, U900, Institut Curie, PSL Research University, Saint-Cloud, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Aline Albi-Feldzer
- Department of Anaesthesiology, Institut Curie, PSL Research University, Saint-Cloud, France
| |
Collapse
|
12
|
Humayun M, Premraj L, Shah V, Cho SM. Mechanical ventilation in acute brain injury patients with acute respiratory distress syndrome. Front Med (Lausanne) 2022; 9:999885. [PMID: 36275802 PMCID: PMC9582443 DOI: 10.3389/fmed.2022.999885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is commonly seen in patients with acute brain injury (ABI), with prevalence being as high as 35%. These patients often have additional risk factors for ARDS compared to general critical care patients. Lung injury in ABI occurs secondary to catecholamine surge and neuro-inflammatory processes. ARDS patients benefit from lung protective ventilation using low tidal volumes, permissive hypercapnia, high PEEP, and lower PO2 goals. These strategies can often be detrimental in ABI given the risk of brain hypoxia and elevation of intracranial pressure (ICP). While lung protective ventilation is not contraindicated in ABI, special consideration is warranted to make sure it does not interfere with neurological recovery. Permissive hypercapnia with low lung volumes can be utilized in patients without any ICP issues but those with ICP elevations can benefit from continuous ICP monitoring to personalize PCO2 goals. Hypoxia leads to poor outcomes in ABI, hence the ARDSnet protocol of lower PO2 target (55-80 mmHg) might not be the best practice in patients with concomitant ARDS and ABI. High-normal PO2 levels are reasonable in target in severe ABI with ARDS. Studies have shown that PEEP up to 12 mmHg does not cause significant elevations in ICP and is safe to use in ABI though mean arterial pressure, respiratory system compliance, and cerebral perfusion pressure should be closely monitored. Given most trials investigating therapeutics in ARDS have excluded ABI patients, focused research is needed in the field to advance the care of these patients using evidence-based medicine.
Collapse
Affiliation(s)
- Mariyam Humayun
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lavienraj Premraj
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Vishank Shah
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sung-Min Cho
- Division of Neuroscience Critical Care, Department of Neurology, Neurosurgery, Surgery, Anesthesiology, and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
13
|
El-Swaify ST, Refaat MA, Ali SH, Abdelrazek AEM, Beshay PW, Kamel M, Bahaa B, Amir A, Basha AK. Controversies and evidence gaps in the early management of severe traumatic brain injury: back to the ABCs. Trauma Surg Acute Care Open 2022; 7:e000859. [PMID: 35071780 PMCID: PMC8734008 DOI: 10.1136/tsaco-2021-000859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) accounts for around 30% of all trauma-related deaths. Over the past 40 years, TBI has remained a major cause of mortality after trauma. The primary injury caused by the injurious mechanical force leads to irreversible damage to brain tissue. The potentially preventable secondary injury can be accentuated by addressing systemic insults. Early recognition and prompt intervention are integral to achieve better outcomes. Consequently, surgeons still need to be aware of the basic yet integral emergency management strategies for severe TBI (sTBI). In this narrative review, we outlined some of the controversies in the early care of sTBI that have not been settled by the publication of the Brain Trauma Foundation’s 4th edition guidelines in 2017. The topics covered included the following: mode of prehospital transport, maintaining airway patency while securing the cervical spine, achieving adequate ventilation, and optimizing circulatory physiology. We discuss fluid resuscitation and blood product transfusion as components of improving circulatory mechanics and oxygen delivery to injured brain tissue. An outline of evidence-based antiplatelet and anticoagulant reversal strategies is discussed in the review. In addition, the current evidence as well as the evidence gaps for using tranexamic acid in sTBI are briefly reviewed. A brief note on the controversial emergency surgical interventions for sTBI is included. Clinicians should be aware of the latest evidence for sTBI. Periods between different editions of guidelines can have an abundance of new literature that can influence patient care. The recent advances included in this review should be considered both for formulating future guidelines for the management of sTBI and for designing future clinical studies in domains with clinical equipoise.
Collapse
Affiliation(s)
| | - Mazen A Refaat
- Department of surgery, Ain Shams University Hospital, Cairo, Egypt
| | - Sara H Ali
- Department of surgery, Ain Shams University Hospital, Cairo, Egypt
| | | | | | - Menna Kamel
- Department of surgery, Ain Shams University Hospital, Cairo, Egypt
| | - Bassem Bahaa
- Department of surgery, Ain Shams University Hospital, Cairo, Egypt
| | - Abdelrahman Amir
- Department of surgery, Ain Shams University Hospital, Cairo, Egypt
| | - Ahmed Kamel Basha
- Department of neurosurgery, Ain Shams University Faculty of Medicine, Cairo, Egypt
| |
Collapse
|