1
|
Shan X, Li D, Yin H, Tao W, Zhou L, Gao Y, Xing C, Zhang C. Recent Insights on the Role of Nuclear Receptors in Alzheimer's Disease: Mechanisms and Therapeutic Application. Int J Mol Sci 2025; 26:1207. [PMID: 39940973 PMCID: PMC11818835 DOI: 10.3390/ijms26031207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad array of biological processes, including inflammation, lipid metabolism, cell proliferation, and apoptosis. Among the diverse family of NRs, peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), liver X receptor (LXR), farnesoid X receptor (FXR), retinoid X receptor (RXR), and aryl hydrocarbon receptor (AhR) have garnered significant attention for their roles in neurodegenerative diseases, particularly Alzheimer's disease (AD). NRs influence the pathophysiology of AD through mechanisms such as modulation of amyloid-beta (Aβ) deposition, regulation of inflammatory pathways, and improvement of neuronal function. However, the dual role of NRs in AD progression, where some receptors may exacerbate the disease while others offer therapeutic potential, presents a critical challenge for their application in AD treatment. This review explores the functional diversity of NRs, highlighting their involvement in AD-related processes and discussing the therapeutic prospects of NR-targeting strategies. Furthermore, the key challenges, including the necessity for the precise identification of beneficial NRs, detailed structural analysis through molecular dynamics simulations, and further investigation of NR mechanisms in AD, such as tau pathology and autophagy, are also discussed. Collectively, continued research is essential to clarify the role of NRs in AD, ultimately facilitating their potential use in the diagnosis, prevention, and treatment of AD.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Dawei Li
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Huihui Yin
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenwen Tao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Lele Zhou
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yu Gao
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengjie Xing
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Caiyun Zhang
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (X.S.); (D.L.); (H.Y.); (W.T.); (L.Z.); (Y.G.); (C.X.)
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, Anhui University of Chinese Medicine, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
- School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Liu Y, Chen L, Wang J, Bao X, Huang J, Qiu Y, Wang T, Yu H. Repurposing cyclovirobuxine D as a novel inhibitor of colorectal cancer progression via modulating the CCT3/YAP axis. Br J Pharmacol 2024; 181:4348-4368. [PMID: 38992898 DOI: 10.1111/bph.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated β-galactosidase (SA-β-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.
Collapse
Affiliation(s)
- Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaomei Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Cai M, Chen Z, Zhang M, Xia W, Dai W, Zhao M, Xie R, Ji Z, Han L, Peng D. The Tao Hong Si Wu Decoction ameliorates diabetes-associated cognitive dysfunction by inhibiting the formation of amyloid plaques. Int J Geriatr Psychiatry 2024; 39:e6076. [PMID: 38488826 DOI: 10.1002/gps.6076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES The herbs in Tao Hong Si Wu Decoction (THSWD) are beneficial in the treatment of cognitive impairment. However, the underlying mechanisms of THSWD in treating diabetes-associated cognitive dysfunction (DACD) are not entirely explored. This study is aimed to investigate the therapeutic effects of THSWD in DACD model rats and the underlying mechanism. METHODS Ultra-high-phase liquid chromatography was employed to identify the main compounds contained in the THSWD extract. DACD rat model was induced by feeding with a high-sugar and high-fat diet and injecting streptozotocin (35 mg/kg). DACD rats were gavaged with THSWD for 1 week. The learning and memory abilities of the rats were measured by using the Morris water maze. Western blotting was used to detect the changes in DACD rat targets. Statistical methods were used to evaluate the correlation between proteins. RESULTS The results show that THSWD effectively reduced the escape latency, hippocampal neuron damage, glycosylated hemoglobin, type A1C, and blood lipid levels in DACD rats. Furthermore, DACD rats showed significantly increased amyloid precursor protein, β-secretase, Aβ1-40 , Aβ1-42 , Tau phosphorylation, and advanced glycation end products (AGEs) expression. However, THSWD treatment can reverse this phenomenon. CONCLUSIONS THSWD can improve the learning and memory abilities of DACD rats by inhibiting the expression of AEGs-AGE receptors pathway, which provides an experimental basis for the clinical application of THSWD. In addition, the experiment combines pharmacological and statistical methods, which offers a new perspective for the study of Chinese herbal medicine.
Collapse
Affiliation(s)
- Ming Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhen Chen
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei, Anhui, China
- Department of Pharmacy, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Mengling Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wenwen Xia
- Department of Pharmacy, Lu'an City Hospital of Traditional Chinese Medicine, Lu'an, Anhui, China
| | - Wentao Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Mengdie Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ruonan Xie
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zhaojie Ji
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Lan Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|