1
|
Zhou D, Xu M, Liu Q, Xin R, Cui G, Ding L, Liu X, Zhang X, Yan T, Zhou J, He S, Yang L, Xiang B, Cheng Z. Plus-strand RNA viruses hijack Musashi homolog 1 to shield viral RNA from cytoplasmic ribonuclease degradation. J Virol 2025; 99:e0002325. [PMID: 39936918 PMCID: PMC11915826 DOI: 10.1128/jvi.00023-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025] Open
Abstract
A successful strategy employed by RNA viruses to achieve replication is to evade host cell RNase degradation. However, the mechanisms through which plus-strand RNA viruses effectively shield viral RNA from cellular ribonuclease degradation remain unclear. In this study, we identified the phenomenon whereby plus-strand RNA viruses, including avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), hijacked host cellular Musashi homolog 1 (MSI1). These viruses upregulated MSI1 expression and facilitated its translocation from the cytoplasmic periphery to a position proximal to and within the nucleus, thereby protecting viral RNA from degradation. Mechanistic analyses revealed that these viruses use distinct regions, the unique (U3) region or three prime untranslated region (3'UTR), to engage with MSI1, consequently shielding their viral RNA from cytoplasmic ribonuclease degradation. These results offer significant implications for understanding the replication tactics used by plus-strand RNA viruses, thereby advancing our understanding of their biological behaviors.IMPORTANCEThe intricate interplay between RNA viruses and host cell RNA regulation encompasses viral mechanisms designed to circumvent RNase-mediated degradation. However, the specific strategies employed by plus-strand RNA viruses to shield their RNA from host ribonucleases remain inadequately characterized. In this study, Musashi homolog 1 (MSI1) is predominantly localized in the cytoplasm of normal cells, distinct from the nucleus. Following infection by plus-strand RNA viruses such as avian leukosis virus subgroup J (ALV-J), reticuloendotheliosis virus (REV), chicken astrovirus (CAstV), and porcine epidemic diarrhea virus (PEDV), these viruses hijack MSI1 to relocate near and within the nucleus. This hijacking is facilitated by specific regions, including unique or three prime untranslated regions, thereby preventing viral RNA from degradation by cytoplasmic ribonucleases. These findings have significant implications for elucidating the replication strategies of plus-strand RNA viruses, thereby advancing our understanding of their biological mechanisms.
Collapse
Affiliation(s)
- Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Menglu Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qingjie Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ruixue Xin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Gege Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tianxing Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shuhai He
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
2
|
Shaily S, Upadhya A. Zika virus: Molecular responses and tissue tropism in the mammalian host. Rev Med Virol 2019; 29:e2050. [PMID: 31095819 DOI: 10.1002/rmv.2050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) outbreaks have raised alarm because of reports of congenital Zika virus syndrome in infants. The virus is also known to cause the debilitating Guillain-Barré syndrome in adults. As a result, extensive research has been carried out on the virus over the past few years. To study the molecular responses of viral infectivity in mammals, in vitro two-dimensional and three-dimensional cellular models have been employed. The in vivo models of mouse, pig, chicken, and nonhuman primates are primarily used to investigate the teratogenicity of the virus, to study effects of the virus on specific tissues, and to study the systemic effects of a proposed antiviral agent. The virus exhibits wide tissue tropism in the mammalian host. The major host tissues of viral persistence and propagation are neural tissue, ocular tissue, testicular tissue and placental tissue. An understanding of the function of viral components, viral replication cycle, and the molecular responses elicited in the host tissues is imperative for designing antiviral treatment strategies and for development of vaccines. This review provides an update on ZIKV research models and mammalian host responses with respect to ZIKV tissue infection.
Collapse
Affiliation(s)
- Sangya Shaily
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Archana Upadhya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
3
|
Asad H, Carpenter DO. Effects of climate change on the spread of zika virus: a public health threat. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:31-42. [PMID: 29500926 DOI: 10.1515/reveh-2017-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/09/2017] [Indexed: 05/18/2023]
Abstract
Zika is a vector-borne viral disease transmitted to humans primarily by Aedes aegypti mosquitoes. The increased climate instability has contributed to the emergence of infections carried by mosquitoes like dengue, chikungunya and zika. While infection with the zika virus is not new, the recent epidemic of microcephaly in Brazil and other countries in South America resulting from the infection of pregnant women with the zika virus raise a number of serious public health concerns. These include the question of how climate change affects the range of zika vectors, what can we do to shorten the length of mosquito season, how and why the symptoms of zika infection have changed and what can be done to reduce the burden of human disease from this infection? Another important question that needs to be answered is what are the factors that caused the zika virus to leave the non-human primates and/or other mammals and invade the human population?
Collapse
Affiliation(s)
- Hina Asad
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, USA
| |
Collapse
|