1
|
Xie F, Feng Z, Xu B. Metabolic Characteristics of Gut Microbiota and Insomnia: Evidence from a Mendelian Randomization Analysis. Nutrients 2024; 16:2943. [PMID: 39275260 PMCID: PMC11397146 DOI: 10.3390/nu16172943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Insomnia is a common sleep disorder that significantly impacts individuals' sleep quality and daily life. Recent studies have suggested that gut microbiota may influence sleep through various metabolic pathways. This study aims to explore the causal relationships between the abundance of gut microbiota metabolic pathways and insomnia using Mendelian randomization (MR) analysis. This two-sample MR study used genetic data from the OpenGWAS database (205 gut bacterial pathway abundance) and the FinnGen database (insomnia-related data). We identified single nucleotide polymorphisms (SNPs) associated with gut bacterial pathway abundance as instrumental variables (IVs) and ensured their validity through stringent selection criteria and quality control measures. The primary analysis employed the inverse variance-weighted (IVW) method, supplemented by other MR methods, to estimate causal effects. The MR analysis revealed significant positive causal effects of specific carbohydrate, amino acid, and nucleotide metabolism pathways on insomnia. Key pathways, such as gluconeogenesis pathway (GLUCONEO.PWY) and TCA cycle VII acetate producers (PWY.7254), showed positive associations with insomnia (B > 0, p < 0.05). Conversely, pathways like hexitol fermentation to lactate, formate, ethanol and acetate pathway (P461.PWY) exhibited negative causal effects (B < 0, p < 0.05). Multivariable MR analysis confirmed the independent causal effects of these pathways (p < 0.05). Sensitivity analyses indicated no significant pleiotropy or heterogeneity, ensuring the robustness of the results. This study identifies specific gut microbiota metabolic pathways that play critical roles in the development of insomnia. These findings provide new insights into the biological mechanisms underlying insomnia and suggest potential targets for therapeutic interventions. Future research should further validate these causal relationships and explore how modulating gut microbiota or its metabolic products can effectively improve insomnia symptoms, leading to more personalized and precise treatment strategies.
Collapse
Affiliation(s)
- Fuquan Xie
- Institute of Biomedical & Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang YT, Wang XL, Lei L, Guo ZY, Hu D, Wang ZZ, Zhang Y. Efficacy of Chinese herbal formula Kai-Xin-San on rodent models of depression: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117492. [PMID: 38012974 DOI: 10.1016/j.jep.2023.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS, or Happy Feeling Powder), a typical Chinese herbal prescription, is frequently used for treating depression by the multi-level and multi-target mechanism. AIM OF THE STUDY To systematically investigate the efficacy and safety of KXS on depression in preclinic trials. MATERIALS AND METHODS We independently searched for preclinical animal studies of KXS on depression from inception to June 28, 2022, using electronic databases, e.g., PUBMED. The measurements were performed to assess the outcomes of behavioral tests. RESULTS This systematic review and meta-analysis included twenty-four studies and 608 animals. A remarkable effect of KXS in depression behavioral tests, including sucrose consumption test (SMD: 2.36, 95% CI: (1.81, 2.90); Z = 8.49, P < 0.00001)., forced swimming test (MD = -60.52, 95% CI: (-89.04, -31.99); Z = 4.16, P < 0.0001), rearing times (MD=4.48, 95% CI: (3.39, 5.57); Z = 8.05, P < 0.00001) and crossing times (MD = -33.7, 95% CI: (25.74, 41.67); Z = 8.29, P < 0.00001) in the open field test, showing KXS's excellent efficiency in improving depressive-like symptoms of animals. CONCLUSIONS Our meta-analysis showed KXS remarkably relieved animals' depressive-like symptoms, providing evidence that KXS can be a promising drug candidate for depression treatment.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Lachmansingh DA, Lavelle A, Cryan JF, Clarke G. Microbiota-Gut-Brain Axis and Antidepressant Treatment. Curr Top Behav Neurosci 2024; 66:175-216. [PMID: 37962812 DOI: 10.1007/7854_2023_449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In the treatment of depressive disorders, conventional antidepressant therapy has been the mainstay of clinical management, along with well-established nonpharmacological interventions such as various kinds of psychotherapy. Over the last 2 decades, there has been considerable interest in the role of the gastrointestinal system and its microbiota on brain function, behavior, and mental health. Components of what is referred to as the microbiota-gut-brain axis have been uncovered, and further research has elicited functional capabilities such as "gut-brain modules." Some studies have found associations with compositional alterations of gut microbiota in patients with depressive disorders and individuals experiencing symptoms of depression. Regarding the pathogenesis and neurobiology of depression itself, there appears to be a multifactorial contribution, in addition to the theories involving deficits in catecholaminergic and monoamine neurotransmission. Interestingly, there is evidence to suggest that antidepressants may play a role in modulating the gut microbiota, thereby possibly having an impact on the microbiota-gut-brain axis in this manner. The development of prebiotics, probiotics, and synbiotics has led to studies investigating not only their impact on the microbiota but also their therapeutic value in mental health. These psychobiotics have the potential to be used as therapeutic adjuncts in the treatment of depression. Regarding future directions, and in an attempt to further understand the role of the microbiota-gut-brain axis in depression, more studies such as those involving fecal microbiota transplantation will be required. In addition to recent findings, it is also suggested that more research will have to be undertaken to elicit whether specific strains of gut organisms are linked to depression. In terms of further investigation of the therapeutic potential of prebiotics, probiotics, and synbiotics as adjuncts to antidepressant treatment, we also expect there to be more research targeting specific microorganisms, as well as a strong focus on the effects of specific prebiotic fibers from an individualized (personalized) point of view.
Collapse
Affiliation(s)
- David Antoine Lachmansingh
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Li S, Wang S, Pan C, Luo Y, Liang S, Long S, Yang X, Wang B. Differences in Physiological Performance and Gut Microbiota between Deep-Sea and Coastal Aquaculture of Thachinotus Ovatus: A Metagenomic Approach. Animals (Basel) 2023; 13:3365. [PMID: 37958120 PMCID: PMC10648977 DOI: 10.3390/ani13213365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aquaculture has become the fastest growing sector in global agriculture. The environmental degradation, diseases, and high density of mariculture has made for an inevitable shift in mariculture production from coastal to deep-sea areas. The influence that traditional coastal and emerging deep-sea farming environments exert on aquatic growth, immunity and gut microbial flora is unclear. To address this question, we compared the growth performance, physiological indicators and intestinal microbiological differences of deep-sea and coastal aquaculture in the Guangxi Beibu Gulf of China. The results showed that the growth performance and the complement of C3 and C4 (C3, C4), superoxide dismutase (SOD), and lysozyme (LYS), these physiological and biochemical indicators in the liver, kidney, and muscle of Trachinotus ovatus (T. ovatus), showed significant differences under different rearing conditions. Metagenome sequencing analysis showed Ascomycota, Pseudomonadota, and Bacillota were the three dominant phyla, accounting for 52.98/53.32 (coastal/deep sea), 24.30/22.13, and 10.39/11.82%, respectively. Aligned against the CARD database, a total of 23/2 (coastal/deep-sea) antibiotic resistance genes were screened and grouped into 4/2 genotypes. It indicated that compared with deep-sea fish, higher biological oxygen levels (3.10 times), inorganic nitrogen (110.00 times) and labile phosphate levels (29.00 times) in coastal waters might contributed to the existence of eutrophication with antibiotic resistance. The results of the study can provide complementary data on the study of the difference between deep-sea farming and traditional coastal farming, serving as a reference to future in-depth work on the transformation of fisheries development and scientific standardization of deep-sea farming.
Collapse
Affiliation(s)
- Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shilin Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Cong Pan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Shitong Liang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Siru Long
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (S.L.); (S.W.); (C.P.); (Y.L.); (S.L.); (S.L.)
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Lyu Q, Zhou X, Shi LQ, Chen HY, Lu M, Ma XD, Ren L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front Behav Neurosci 2023; 17:1107265. [PMID: 36873772 PMCID: PMC9978012 DOI: 10.3389/fnbeh.2023.1107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|