1
|
Xu Z, Gu S, Li Y, Wu J, Zhao Y. Recognition-Enabled Automated Analyte Identification via 19F NMR. Anal Chem 2022; 94:8285-8292. [PMID: 35622989 DOI: 10.1021/acs.analchem.2c00642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) is an indispensable tool for structural elucidation and noninvasive analysis. Automated identification of analytes with NMR is highly pursued in metabolism research and disease diagnosis; however, this process is often complicated by the signal overlap and the sample matrix. We herein report a detection scheme based on 19F NMR spectroscopy and dynamic recognition, which effectively simplifies the detection signal and mitigates the influence of the matrix on the detection. It is demonstrated that this approach can not only detect and differentiate capsaicin and dihydrocapsaicin in complex real-world samples but also quantify the ibuprofen content in sustained-release capsules. Based on the 19F signals obtained in the detection using a set of three 19F probes, automated analyte identification is achieved, effectively reducing the odds of misrecognition caused by structural similarity.
Collapse
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Siyi Gu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yipeng Li
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jian Wu
- Instrumental Analysis Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
2
|
The many faces of packed column supercritical fluid chromatography – A critical review. J Chromatogr A 2015; 1382:2-46. [DOI: 10.1016/j.chroma.2014.12.083] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/15/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
|
3
|
Armenta S, Alcalà M, Blanco M, González J. Ion mobility spectrometry for the simultaneous determination of diacetyl midecamycin and detergents in cleaning validation. J Pharm Biomed Anal 2013; 83:265-72. [DOI: 10.1016/j.jpba.2013.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 11/17/2022]
|
4
|
Zu C, Praay HN, Bell BM, Redwine OD. Derivatization of fatty alcohol ethoxylate non-ionic surfactants using 2-sulfobenzoic anhydride for characterization by liquid chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:120-128. [PMID: 19998388 DOI: 10.1002/rcm.4367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A derivatization procedure has been developed for the improved characterization of fatty alcohol ethoxylate non-ionic surfactants by liquid chromatography/mass spectrometry. The end hydroxyl group of each surfactant species was converted into an oxycarbonylbenzene-2-sulfonic acid group with 2-sulfobenzoic anhydride under mild conditions. The produced sulfonic acid group allows all species, including fatty alcohols and those with less than three ethoxylates, to be uniformly ionized by electrospray ionization (ESI) mass spectrometry. Both acid and base can be used as a mobile phase additive for liquid chromatography without affecting M(n) and average ethoxylate values, although ion intensities are suppressed during the ESI process. The method was used to analyze seven commercial fatty alcohol ethoxylate non-ionic surfactants, and the determined M(n) and EO values were comparable with the results obtained by NMR. The relative ratio of different fatty alcohol based ethoxylates in a sample can also be determined using the summed mass spectral data.
Collapse
Affiliation(s)
- Chengli Zu
- Analytical Sciences, The Dow Chemical Company, Midland, MI 48667, USA.
| | | | | | | |
Collapse
|
5
|
Fournial AG, Molinier V, Vermeersch G, Aubry JM, Azaroual N. High resolution NMR for the direct characterisation of complex polyoxyethylated alcohols (CiEj) mixtures. Colloids Surf A Physicochem Eng Asp 2008. [DOI: 10.1016/j.colsurfa.2008.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|