1
|
Ceylan HK. Enhanced Biomass Production of Recombinant Pfu DNA Polymerase Producer Escherichia coli BL21(DE3) by Optimization of Induction Variables Using Response Surface Methodology. Protein J 2023:10.1007/s10930-023-10122-8. [PMID: 37199865 DOI: 10.1007/s10930-023-10122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/19/2023]
Abstract
Pfu DNA polymerase is one of the most preferred molecular enzymes that is isolated from the hyperthermophilic Pyrococcus furiosus and used for high-throughput DNA synthesis by the polymerase chain reaction. Therefore, an efficient Pfu DNA polymerase production method is necessary for molecular techniques. In the present study, Pfu DNA polymerase was expressed in recombinant Escherichia coli BL21(DE3) and significant parameters for the biomass production were optimized using the central composite design which is the most popular method of response surface methodology. Induction conditions including cell density prior induction (OD600nm), post-induction temperature, IPTG concentration, and post-induction time and their interactions on biomass production were investigated. The maximum biomass production (14.1 g/L) in shake flasks was achieved using the following predicted optimal conditions: OD600nm before induction of 0.4 and the induction at 32 °C for 7.7 h, with 0.6 mM IPTG. Optimized culture conditions were implemented to scale up experiments. 22% and 70% increase in biomass production was achieved in 3 L and 10 L bioreactors, respectively as compared to initial biomass production observed in unoptimized conditions. Similary, a 30% increase of Pfu DNA polymerase production was obtained after the optimization. The polymerase activity of the purifed Pfu DNA polymerase was assessed by PCR amplification and determined as 2.9 U/μl by comparison with commercial Pfu DNA polymerase. The findings of this study indicated that the proposed fermentation conditions will contribute to further scale‑up studies to enhance the biomass for the production of other recombinant proteins.
Collapse
Affiliation(s)
- Hülya Kuduğ Ceylan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, 60250, Tokat, Turkey.
| |
Collapse
|
2
|
Abstract
The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins, and are designated as "biomimetic ligands". A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogs of amino acid side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, and highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.
Collapse
Affiliation(s)
- Isabel T Sousa
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - M Ângela Taipa
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
3
|
|
4
|
Construction, Expression, and Characterization of Recombinant Pfu DNA Polymerase in Escherichia coli. Protein J 2016; 35:145-53. [PMID: 26920159 DOI: 10.1007/s10930-016-9651-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Pfu DNA polymerase (Pfu) is a DNA polymerase isolated from the hyperthermophilic archaeon Pyrococcus furiosus. With its excellent thermostability and high fidelity, Pfu is well known as one of the enzymes widely used in the polymerase chain reaction. In this study, the recombinant plasmid pLysS His6-tagged Pfu-pET28a was constructed. His-tagged Pfu was expressed in Escherichia coli BL21 (DE3) competent cells and then successfully purified with the ÄKTAprime plus compact one-step purification system by Ni(2+) chelating affinity chromatography after optimization of the purification conditions. The authenticity of the purified Pfu was further confirmed by peptide mass fingerprinting. A bio-assay indicated that its activity in the polymerase chain reaction was equivalent to that of commercial Pfu and its isoelectric point was found to be between 6.85 and 7.35. These results will be useful for further studies on Pfu and its wide application in the future.
Collapse
|
5
|
Development of an efficient process intensification strategy for enhancing Pfu DNA polymerase production in recombinant Escherichia coli. Bioprocess Biosyst Eng 2014; 38:651-9. [DOI: 10.1007/s00449-014-1304-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
|
6
|
Abstract
The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.
Collapse
Affiliation(s)
- Isabel T Sousa
- Centre for Biological and Chemical Engineering, Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | |
Collapse
|
7
|
Desch RJ, Daniel B, Frierson A, Miyahara L, Turner BT, Kim J, Fantini JL, Guliants VV, Thiel SW, Pinto NG. Physisorption of Three Calix[4]arenes on Alkyl-Functionalized Mesoporous Silica for Biomimetic Ligand Development. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401970z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca J. Desch
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Breanna Daniel
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Ashley Frierson
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Leland Miyahara
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Benjamin T. Turner
- Department
of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, United States
| | - Jungseung Kim
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Jordan L. Fantini
- Department
of Chemistry and Biochemistry, Denison University, Granville, Ohio 43023, United States
| | - Vadim V. Guliants
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Stephen W. Thiel
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| | - Neville G. Pinto
- School
of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| |
Collapse
|
8
|
Pina AS, Lowe CR, Roque ACA. Comparison of Fluorescence Labelling Techniques for the Selection of Affinity Ligands from Solid-Phase Combinatorial Libraries. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496395.2010.507447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Sun Y, Liu FF, Shi QH. Approaches to high-performance preparative chromatography of proteins. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009; 113:217-254. [PMID: 19373447 DOI: 10.1007/10_2008_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Preparative liquid chromatography is widely used for the purification of chemical and biological substances. Different from high-performance liquid chromatography for the analysis of many different components at minimized sample loading, high-performance preparative chromatography is of much larger scale and should be of high resolution and high capacity at high operation speed and low to moderate pressure drop. There are various approaches to this end. For biochemical engineers, the traditional way is to model and optimize a purification process to make it exert its maximum capability. For high-performance separations, however, we need to improve chromatographic technology itself. We herein discuss four approaches in this review, mainly based on the recent studies in our group. The first is the development of high-performance matrices, because packing material is the central component of chromatography. Progress in the fabrication of superporous materials in both beaded and monolithic forms are reviewed. The second topic is the discovery and design of affinity ligands for proteins. In most chromatographic methods, proteins are separated based on their interactions with the ligands attached to the surface of porous media. A target-specific ligand can offer selective purification of desired proteins. Third, electrochromatography is discussed. An electric field applied to a chromatographic column can induce additional separation mechanisms besides chromatography, and result in electrokinetic transport of protein molecules and/or the fluid inside pores, thus leading to high-performance separations. Finally, expanded-bed adsorption is described for process integration to reduce separation steps and process time.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China,
| | | | | |
Collapse
|
10
|
|
11
|
Melissis S, Labrou NE, Clonis YD. One-step purification of Taq DNA polymerase using nucleotide-mimetic affinity chromatography. Biotechnol J 2007; 2:121-32. [PMID: 17183508 DOI: 10.1002/biot.200600191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thermostable Thermus aquaticus DNA polymerase (Taq Pol) has been the key factor in transforming the initial PCR method into one with huge impact in molecular biology and biotechnology. Therefore, the development of effective affinity adsorbents for the purification of Taq Pol, as well as other DNA polymerases, attracts the attention of the enzyme manufacturers and the research laboratories. In this report we describe a simple protocol for the purification of Taq Pol from E. coli lysates, leading to enzymes of high specific activity and purity. The protocol is based on a single affinity chromatography step, featuring an immobilized ligand selected from a structure-biased combinatorial library of dNTP-mimetic synthetic ligands. The ligand library was screened for its ability to bind and purify Taq Pol from E. coli lysates. One immobilized ligand (mABSGu) of the general formula X-Trz-Y, bearing 9-aminoethylguanine (AEGu) and aniline-2-sulfonic acid (mABS) linked on the triazine scaffold (Trz), displayed the highest purifying ability. Adsorption equilibrium studies with this affinity ligand and Taq Pol determined a dissociation constant (KD) of 0.12 mM for the respective complex, whereas ATP prevented the formation of the mABSGu-Taq Pol complex. The mABSGu affinity adsorbent was exploited in the development of a facile Taq Pol purification protocol, affording homogeneous enzyme (>99% purity, approximately 61 500 U/mg) in a single chromatography step. Quality control tests showed that Taq Pol purified on the mABSGu affinity adsorbent is free of nucleic acids and contaminating nuclease activities.
Collapse
Affiliation(s)
- Sotirios Melissis
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | |
Collapse
|