1
|
Yan M, Zhu T, Wen C. Purification of testosterone and its metabolites in urine using two-dimensional high-performance liquid chromatography for 13C/ 12C ratios analysis by gas chromatography/combustion/isotope ratio mass spectrometry. J Pharm Biomed Anal 2025; 263:116921. [PMID: 40300313 DOI: 10.1016/j.jpba.2025.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
Two-dimensional high-performance liquid chromatography (2D-HPLC) is employed as a sample purification method for the isolation and enrichment of testosterone and its main metabolites in urine samples, thereby facilitating subsequent determination of 13C/12C ratios (δ13C) using Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry (GC/C/IRMS). The orthogonality of the HPLC columns was optimized by leveraging the distinct differences in polarity and steric hindrance effects between the stationary phases, enabling effective separation of endogenous interferents from testosterone in urine. Urine samples purified with 2D-HPLC exhibit significantly reduced matrix interferences in the fractions of testosterone (T), 5α-androstane-3α,17β-diol (5α-diol), and 5β-androstane-3α,17β-diol (5β-diol), thereby enhancing the accuracy and reliability of GC/C/IRMS analysis. The method achieves limit of quantification as low as 2 ng/mL for testosterone, and 3 ng/mL for both 5β-diol and 5α-diol. Furthermore, the simple instrument configuration enables direct transfer of 1D-purified fractions to 2D-HPLC for further isolation and enrichment, providing a flexible and efficient workflow for method development, particularly in handling complex biological matrices.
Collapse
Affiliation(s)
- Mengmeng Yan
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100029, China
| | - Tianshuo Zhu
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100029, China
| | - Chao Wen
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100029, China.
| |
Collapse
|
2
|
Plachká K, Pilařová V, Horáček O, Gazárková T, Vlčková HK, Kučera R, Nováková L. Columns in analytical-scale supercritical fluid chromatography: From traditional to unconventional chemistries. J Sep Sci 2023; 46:e2300431. [PMID: 37568246 DOI: 10.1002/jssc.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Within this review, we thoroughly explored supercritical fluid chromatography (SFC) columns used across > 3000 papers published from the first study carried out under SFC conditions in 1962 to the end of 2022. We focused on the open tubular capillary, packed capillary, and packed columns, their chemistries, dimensions, and trends in used stationary phases with correlation to their specific interactions, advantages, drawbacks, used instrumentation, and application field. Since the 1990s, packed columns with liquid chromatography and SFC-dedicated stationary phases for chiral and achiral separation are predominantly used. These stationary phases are based on silica support modified with a wide range of chemical moieties. Moreover, numerous unconventional stationary phases were evaluated, including porous graphitic carbon, titania, zirconia, alumina, liquid crystals, and ionic liquids. The applications of unconventional stationary phases are described in detail as they bring essential findings required for further development of the supercritical fluid chromatography technique.
Collapse
Affiliation(s)
- Kateřina Plachká
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Veronika Pilařová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Taťána Gazárková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Hana Kočová Vlčková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Field JK, Bruce J, Buckenmaier S, Cheung MY, Euerby MR, Haselmann KF, Lau JF, Stoll D, Sylvester M, Thogersen H, Petersson P. Method Development for Reversed-Phase Separations of Peptides: A Rational Screening Strategy for Column and Mobile Phase Combinations with Complementary Selectivity. LCGC EUROPE 2022. [DOI: 10.56530/lcgc.eu.qp3971p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review article summarizes the results obtained from the combined efforts of a joint academic and industrial initiative to solve the real-life challenge of determining low levels of peptide-related impurities (typically 0.05–1% of the drug substance) in the presence of the related biologically active peptide at a high concentration. A rational screening strategy for pharmaceutically important peptides has been developed that uses combinations of reversed‑phase ultrahigh-pressure liquid chromatography (UHPLC) columns and mobile phases that exhibit complementary reversed-phase chromatographic selectivity using either UV- or mass spectrometry (MS)-compatible conditions. Numerous stationary and mobile phases were categorized using the chemometric tool of principal component analysis (PCA), employing a novel characterization protocol utilizing specifically designed peptide probes. This was successfully applied to the development of a strategy for the detection of impurities (especially isomers) in peptide drug substances using two-dimensional liquid chromatography coupled with MS detection (2D-LC–MS).
Collapse
|
4
|
Gilar M, Berthelette KD, Walter TH. Contribution of ionic interactions to stationary phase selectivity in hydrophilic interaction chromatography. J Sep Sci 2022; 45:3264-3275. [PMID: 35347885 PMCID: PMC9545918 DOI: 10.1002/jssc.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
We compared the separation selectivities of 19 different hydrophilic interaction chromatography columns. The stationary phases included underivatized silica and hybrid particles, cyano-bonded silica, materials with neutral ligands such as amide, diol, pentahydroxy, and urea, zwitterionic sorbents, and mixed-mode materials with amine functionalities. A set of 77 small molecules was used to evaluate the columns. We visualized the retention behavior of the different columns using retention time correlation plots. The analytes were classified as cations, anions, or neutral based on their estimated charge under the separation conditions. This involved adjusting the dissociation constants of the analytes for the acetonitrile content of the mobile phase and experimentally determining the pH of the mobile phase containing 70% acetonitrile. The retention correlation plots show that the selectivity differences strongly depended on ionic interactions. Comparisons of the neutral stationary phases (e.g., diol vs. amide) showed more similar selectivity than did comparisons of neutral columns versus columns with cation or anion exchange activity (bare silica or amine columns, respectively). The zwitterionic columns did not behave as perfectly neutral. The correlation plots indicated that they exhibited either cation or anion exchange activity, although to a lesser degree than the silica and amine-containing stationary phases.
Collapse
Affiliation(s)
- Martin Gilar
- Separations R&DWaters CorporationMilfordMassachusettsUSA
| | | | | |
Collapse
|
5
|
Sun HM, Zhang AL, Bao HL, Chu C, Tong SQ. In Silico Screening of Off-line Comprehensive Two-Dimensional Counter-current Chromatography with Liquid Chromatography for Four Saponins Isolation. J Sep Sci 2022; 45:3909-3918. [PMID: 35962755 DOI: 10.1002/jssc.202200395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Be restrained by the limited peak capacity, one dimension chromatography usually leads to an unsatisfactory separation with low purity of compounds in a complex mixture. To obtain more highly pure targets for standard reference and to discover new substances for structural elucidation, two-dimensional chromatography is more and more prevalent in many fields. As few metrics on assessment of preparative capability of two-dimensional chromatographic separations is reported, a methodology of in silico screening of various two-dimensional chromatographic separations with a minimal number of experiments was demonstrated in this work, which was based on three descriptors including the occupation rate of peaks and system homogeneity of a two-dimensional separation space, and the minimal distance of all nearest-neighbor distances of peaks. Combining the advantages of counter-current chromatography and liquid chromatography, we elaborated the methodology by employing off-line comprehensive two-dimensional counter-current chromatography with liquid chromatography to be in silico screened for separation of four saponins from Panax notoginseng at analytical scale to simulate the case of preparative scale transfer. The predictive results were presented by two-dimensional contour plots and verified by experiments. The result showed that the experimental results were in general accord with the predictive results. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng-Mian Sun
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Ai-Lian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University
| | - Hong-Lei Bao
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology
| |
Collapse
|
6
|
Edge T, James M, Pipe C, Bylikin S, Field J, Euerby M. An Assessment of Stationary Phase Selectivity in SFC. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ml7572h4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supercritical fluid chromatography (SFC) has seen a recent resurgence in interest following investment in the development of instrument technology by numerous instrument manufacturers. Increased focus on sustainability in chromatographic science, coupled with the orthogonality to reversed phase HPLC, is likely to further drive the uptake of SFC in many sectors. As with any form of chromatography, optimizing separation selectivity is a key variable in providing adequate resolution and accurate identification and quantification of target analytes. Stationary phase chemistry can be readily exploited to substantially alter the separation selectivity obtained. This article examines and characterizes the selectivity differences offered by three prototype SFC phases.
Collapse
|
7
|
Guilty by Dissociation: Part B: Evaluation of Supercritical Fluid Chromatography (SFC-UV) for the analysis of regioisomeric diphenidine-derived Novel Psychoactive Substances (NPS). J Pharm Biomed Anal 2022; 216:114797. [DOI: 10.1016/j.jpba.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
|
8
|
Analytical Lifecycle Management (ALM) and Analytical Quality by Design (AQbD) for analytical procedure development of related substances in tenofovir alafenamide fumarate tablets. J Pharm Biomed Anal 2022; 207:114417. [PMID: 34678556 DOI: 10.1016/j.jpba.2021.114417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023]
Abstract
Analytical procedure development for quantifying 10 impurities in Tenofovir Alafenamide Fumarate (TAF) tablets was a challenge for analytical and formulation researchers. The aim of this paper was to develop a robust, regulatory-flexible, application-specific Ultra Performance Liquid Chromatography (UPLC) analytical procedure using the Analytical Lifecycle Management (ALM) and the Analytical Quality by Design (AQbD) for the estimation of the TAF tablets. In this work, the Analytical Target Profile (ATP) for the analytical procedure and the Critical Analytical Attributes (CAAs) were identified. Through the risk assessment studies, the high-risk analytical conditions were found, and they were screened and optimized by the Design of Experiment (DoE) to obtain the Design Space (DS) and identify the working point. The prediction intervals were used to examine the robustness of the analytical procedure. And the procedure performance qualification and the continued procedure performance verification were used to ensure routine application of analytical procedure. Finally, the 10 impurities were separated within 20 min by UPLC. The success of this study demonstrates the usefulness of using ALM and AQbD for analytical procedure development and provides a reference for the analytical procedure development for other drugs.
Collapse
|
9
|
Stationary-phase optimized selectivity in supercritical fluid chromatography using a customized Phase OPtimized Liquid Chromatography kit: comparison of different prediction approaches. Anal Bioanal Chem 2020; 412:6553-6565. [DOI: 10.1007/s00216-020-02739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
|
10
|
Field JK, Bell A, Christopoulou I, Petersson P, Ferguson PD, Euerby MR. Column Classification/Characterisation of Strong Cation Exchange Phases for the Liquid Chromatographic Analysis of Small Molecular Weight Bases. Chromatographia 2020. [DOI: 10.1007/s10337-020-03943-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractA simple, rapid and robust protocol for the characterisation of strong cation exchange columns for the analysis of small molecular weight bases is described. A range of ten different phases were characterised, and the resultant selectivity and retention factors analysed using Principal Component Analysis. The score plots for the first and second principal components described 83% of the variability within the dataset. Score plots highlighted the large chromatographic differences observed between the phases, the validity of which was established using a larger range of bases. All the strong cation exchange materials demonstrated a synergistic mixed mode (i.e. ion exchange and hydrophobic) retention mechanism. Principal Component Analysis also highlighted the potential difficulty in locating suitable strong cation exchange “back-up” columns for the analysis of small molecular weight bases in that the characterised columns all displayed very different selectivities. The robustness of the protocol was confirmed by a factorial design experiment.
Collapse
|
11
|
May MC, Pavone DC, Lurie IS. The separation and identification of synthetic cathinones by portable low microflow liquid chromatography with dual capillary columns in series and dual wavelength ultraviolet detection. J Sep Sci 2020; 43:3756-3764. [PMID: 32743973 DOI: 10.1002/jssc.202000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022]
Abstract
This study ascertained the viability of a portable liquid chromatograph, operating at low microliter per minute flow, for the analysis of seized drugs at remote sites as well as in laboratory settings. Synthetic cathinones were screened using dual capillary columns in series, C8 and biphenyl, with on-column ultraviolet detection at 255 and 275 nm. The relative retention times of the two columns in series and their peak area absorbance ratio were used to determine if the 16 synthetic cathinones investigated could be uniquely identified in these conditions. Based on these parameters all of the analytes could be distinguished. Representative mixtures of synthetic cathinones were used to determine the repeatability, linearity, and limits of detection of the method. This cost effective and green instrumentation has the potential to satisfy minimum international guidelines for the analysis of seized drugs.
Collapse
Affiliation(s)
- Marisa C May
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| | - David C Pavone
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| | - Ira S Lurie
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| |
Collapse
|
12
|
Poole CF, Atapattu SN. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 2020; 1626:461427. [DOI: 10.1016/j.chroma.2020.461427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
|
13
|
Kadlecová Z, Kalíková K, Folprechtová D, Tesařová E, Gilar M. Method for evaluation of ionic interactions in liquid chromatography. J Chromatogr A 2020; 1625:461301. [DOI: 10.1016/j.chroma.2020.461301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/17/2023]
|
14
|
Field JK, Euerby MR, Petersson P. Investigation into reversed phase chromatography peptide separation systems part III: Establishing a column characterisation database. J Chromatogr A 2020; 1622:461093. [PMID: 32340726 DOI: 10.1016/j.chroma.2020.461093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
The Peptide RPC Column Characterisation Protocol was applied to 38 stationary phases, varying in ligand chemistry, base silica, end capping and pore size, which are suitable for the analysis of peptides. The protocol at low and intermediate pH is based on measuring retention time differences between peptides of different functionality to calculate selectivity delta values. The characterisation was designed to explore increases / decreases in positive or negative charge (deamidation), steric effect (i.e. racemisation / switch in amino acid order), oxidation and addition / removal of aromatic moieties. The necessity of developing a characterisation protocol specifically for peptide analysis was highlighted by the fact that the small molecule databases (Snyder's Hydrophobic Subtraction Model and the extended Tanaka protocol) failed to correlate with the Peptide RPC Column Characterisation Protocol. Principal Component Analysis was used to demonstrate that the protocol could be used to identify columns with similar or dissimilar chromatographic selectivity for the purpose of selectivity back-up or method development columns respectively. This was validated using peptide fragments derived from the tryptic digest of bovine insulin and carbonic anhydrase. It was also demonstrated that the presence of positively charged functional groups on the stationary phase was advantageous as it yielded very different chromatographic selectivity and improved peak shape.
Collapse
Affiliation(s)
- Jennifer K Field
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, United Kingdom
| | - Melvin R Euerby
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, United Kingdom; Shimadzu UK, MK12 5RD, Milton Keynes, Buckinghamshire, United Kingdom
| | | |
Collapse
|
15
|
Obradović D, Stavrianidi AN, Ustinovich KB, Parenago OO, Shpigun OA, Agbaba D. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. J Chromatogr A 2019; 1603:371-379. [DOI: 10.1016/j.chroma.2019.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
|
16
|
Hettiarachchi K, Hayes M, Desai AJ, Wang J, Ren Z, Greshock TJ. Subminute micro-isolation of pharmaceuticals with ultra-high pressure liquid chromatography. J Pharm Biomed Anal 2019; 176:112794. [PMID: 31437749 DOI: 10.1016/j.jpba.2019.112794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/16/2019] [Accepted: 07/28/2019] [Indexed: 11/26/2022]
Abstract
The drive for faster separations while maintaining quality and yield remains an important consideration for enhanced productivity as well as cost reduction for drug discovery laboratories in the pharmaceutical industry. High-throughput experimentation (HTE) and high-throughput screening (HTS) techniques can benefit from rapid and efficient isolation of product at high purity and recovery from microgram-scale crude reaction mixtures. In this study we describe the isolation of small molecule and biomolecule crude mixtures at the microgram-scale (100-2500 μg) in single or library format with methods as fast as 1.0 min and system pressures averaging 10,000 psi with an ultra-high pressure liquid chromatography (UHPLC) setup. UHPLC technology provides several advantages for rapid (<1.0 min) separations with small-particle (1.8-3.5 μm) size 4.6 × 50 mm C18 columns such as minimal extra column and delay volume, fast detector response time, and higher linear velocities for improved speed and resolution. We typically see a 5-10 fold improvement in purification time and overall sample processing time with low fraction volumes and same-day drying when compared with traditional semi-preparative techniques. There is a significant 50-fold reduction in solvent usage per run, resulting in a much lower cost of solvent and waste handling. Fluidic pathways have been optimized for collection into tared high-density 96 or 384 well 2D barcoded storage tubes in a microtiter plate (MTP) layout. Coupling the system to robotics has enabled us to implement a fully integrated automation platform with additional capabilities for small-scale purification at high speed and reduced cost of materials. The resulting arrays of small-quantity, high-purity compounds enable synthetic route scouting for HTE and HTS for biological target validation.
Collapse
Affiliation(s)
- Kanaka Hettiarachchi
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA.
| | - Michael Hayes
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Aditya J Desai
- Pharmacology, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Jun Wang
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Zhao Ren
- Pharmacology, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| | - Thomas J Greshock
- Discovery Chemistry, Merck & Co., Inc., 213. E. Grand Ave., South San Francisco, CA 94080, USA
| |
Collapse
|
17
|
High-selectivity profiling of released and labeled N-glycans via polar-embedded reversed-phase chromatography. Anal Bioanal Chem 2018; 411:735-743. [PMID: 30478517 PMCID: PMC6338698 DOI: 10.1007/s00216-018-1495-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/02/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Abstract
N-Glycosylation is the most complex post-translational modification of proteins and involved in many physiological processes and is therefore of major interest in academic research and in the biopharmaceutical industry. Reliable, robust, reproducible, and selective analysis of N-glycans is essential to understand the multitude of biological roles of N-glycosylation. So far, hydrophilic interaction liquid chromatography analysis of 2-AB or 2-AA derivatized N-glycans has been the standard method. In this work, the superiority of reversed-phase chromatography for complex N-glycosylation analysis is demonstrated. Separation of N-glycans derivatized with anthranilic acid on polar-embedded stationary alkyl phases with sub-2-μm particles results in outstanding selectivity and resolution. In combination with the highly mass spectrometry–compatible mobile phase, even very complex glycan mixtures can be separated, identified, and quantified precisely and accurately. The presented methodology can be applied broadly from basic research to analytical control and release testing of biological drug products and can be implemented in analytical laboratories with minimal effort. ᅟ ![]()
Collapse
|
18
|
Marlot L, Batteau M, De Beer D, Faure K. In Silico Screening of Comprehensive Two-Dimensional Centrifugal Partition Chromatography × Liquid Chromatography for Multiple Compound Isolation. Anal Chem 2018; 90:14279-14286. [DOI: 10.1021/acs.analchem.8b03440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Léa Marlot
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Magali Batteau
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Dalene De Beer
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa
- Department of Food Science, University of Stellenbosch, Private Bag X1, 7602 Matieland, Stellenbosch, South Africa
| | - Karine Faure
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| |
Collapse
|
19
|
Ji S, Wang S, Xu H, Su Z, Tang D, Qiao X, Ye M. The application of on-line two-dimensional liquid chromatography (2DLC) in the chemical analysis of herbal medicines. J Pharm Biomed Anal 2018; 160:301-313. [PMID: 30114608 DOI: 10.1016/j.jpba.2018.08.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
Herbal medicines are complicated chemical systems containing hundreds of small molecules of various polarities, structural types, and contents. Thus far, the chromatographic separation of herbal extracts is still a big challenge. Two-dimensional liquid chromatography (2DLC) has become an attractive separation tool in the past few years. Particularly, a lot of attention has been paid to on-line 2DLC. In this review, we aim to give an overview on applications of on-line 2DLC in the chemical analysis of herbal medicines since 2010. Firstly, classification and general configurations of on-line 2DLC were briefly introduced. Then, we summarized main applications in herbal medicines of heart-cutting 2DLC (LC-LC), comprehensive 2DLC (LC × LC), and their combinations, with emphasis on LC × LC. Mass spectrometry is the most popular detector coupled with 2DLC, which allows sensitive and accurate structural characterization of herbal compounds. Finally, future developments in on-line 2DLC techniques were also discussed.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Shuang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Haishan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Civil Aviation Medicine Center & Civil Aviation General Hospital, Civil Aviation Administration of China, A-1 Gaojing, Chaoyang District, Beijing 100123, China
| | - Zhenyu Su
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Daoquan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
20
|
Poole CF. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:207-219. [DOI: 10.1016/j.jchromb.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/09/2023]
|
21
|
Wu C, Liang Y, Zhu X, Zhao Q, Fang F, Zhang X, Liang Z, Zhang L, Zhang Y. Macro-mesoporous organosilica monoliths with bridged-ethylene and terminal-vinyl: High-density click functionalization for chromatographic separation. Anal Chim Acta 2018; 1038:198-205. [PMID: 30278903 DOI: 10.1016/j.aca.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
Abstract
A novel kind of macro-mesoporous organosilica monolith, with not only bridged-ethylene groups incorporated into the skeleton but also terminal-vinyl groups protruded from the pore-wall, was prepared so that high-loaded double bonds were achieved. Via highly efficient "thiol-ene" click reaction of such high-loaded double bonds, the surface coverage of C18 groups on monolith could be 5.54 μmol m-2, significantly larger than that of the reported separation materials, beneficial to improvement of separation resolution, especially for peptide separation. The separation performance was evaluated using alkylbenzenes and standard peptides. Furthermore, the tryptic digests of complex sample was successfully analyzed. Because of high separation resolution of our prepared hybrid monolith, the peak capacity for 6-h gradient was achieved as 482. Coupling to LTQ Orbitrap Velos Mass Spectrometry, 22523 tryptic peptides from 4423 proteins were identified from the HeLa cells, more than that using the other long-gradient separation by the same system reported, showing great promising of such monolith for large-scale in-depth proteomic analysis.
Collapse
Affiliation(s)
- Ci Wu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Inspection and Quarantine Technical Center of Dalian Entry-Exit Inspection and Quarantine Bureau, Dalian, 116100, China
| | - Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xudong Zhu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qun Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fei Fang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaodan Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
22
|
Poole CF. Influence of Solvent Effects on Retention of Small Molecules in Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3531-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Comprehensive two dimensional liquid chromatography as analytical strategy for pharmaceutical analysis. J Chromatogr A 2018; 1536:195-204. [DOI: 10.1016/j.chroma.2017.08.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
24
|
Jandera P, Hájek T. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J Sep Sci 2017; 41:145-162. [DOI: 10.1002/jssc.201701010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Tomáš Hájek
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
25
|
Wu W, Zhang Y, Wu H, Zhou W, Cheng Y, Li H, Zhang C, Li L, Huang Y, Zhang F. Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography. J Sep Sci 2017; 40:2827-2837. [DOI: 10.1002/jssc.201601454] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Wenjie Wu
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
- School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Yuan Zhang
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
- Department of Pharmacy, National Cancer Center/Cancer Hospital; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - Hanqiu Wu
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Weie Zhou
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Yan Cheng
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Hongna Li
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Chuanbin Zhang
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| | - Lulu Li
- School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Ying Huang
- School of Pharmacy; Hunan University of Chinese Medicine; Changsha Hunan China
| | - Feng Zhang
- Institute of Food Safety; Chinese Academy of Inspection and Quarantine; Beijing China
| |
Collapse
|
26
|
Schure MR, Davis JM. Orthogonality measurements for multidimensional chromatography in three and higher dimensional separations. J Chromatogr A 2017; 1523:148-161. [PMID: 28673634 DOI: 10.1016/j.chroma.2017.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions, characterized by mixes of ordered and random retention times, and applied to the experimental datasets. In 2D, the new metric always equals or exceeds the original one. However, results from both the original and new methods are given.
Collapse
Affiliation(s)
- Mark R Schure
- Theoretical Separation Science Laboratory, Kroungold Analytical, Inc., 1299 Butler Pike, Blue Bell, PA 19422 USA.
| | - Joe M Davis
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, IL 62901-4409 USA.
| |
Collapse
|
27
|
Jandera P, Janás P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review. Anal Chim Acta 2017; 967:12-32. [DOI: 10.1016/j.aca.2017.01.060] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/01/2022]
|
28
|
Bacalum E, Cheregi M. Recent analytical applications of fluorinated hydrocarbon-based stationary phases in HPLC. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1284676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elena Bacalum
- Research Institute from University of Bucharest – ICUB, Bucharest, Romania
| | - Mihaela Cheregi
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
29
|
Comparison of ultra-high performance methods in liquid and supercritical fluid chromatography coupled to electrospray ionization – mass spectrometry for impurity profiling of drug candidates. J Chromatogr A 2016; 1472:117-128. [DOI: 10.1016/j.chroma.2016.10.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/17/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
|
30
|
In-silico optimisation of two-dimensional high performance liquid chromatography for the determination of Australian methamphetamine seizure samples. Forensic Sci Int 2016; 266:511-516. [DOI: 10.1016/j.forsciint.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 01/18/2023]
|
31
|
Comprehensive two-dimensional liquid chromatography–tandem mass spectrometry for the simultaneous determination of wine polyphenols and target contaminants. J Chromatogr A 2016; 1458:54-62. [DOI: 10.1016/j.chroma.2016.06.042] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 02/04/2023]
|
32
|
Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. J Chromatogr A 2016; 1446:91-102. [DOI: 10.1016/j.chroma.2016.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 11/23/2022]
|
33
|
Evaluation of innovative stationary phase ligand chemistries and analytical conditions for the analysis of basic drugs by supercritical fluid chromatography. J Chromatogr A 2016; 1438:244-53. [DOI: 10.1016/j.chroma.2016.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
|
34
|
Romand S, Rudaz S, Guillarme D. Separation of substrates and closely related glucuronide metabolites using various chromatographic modes. J Chromatogr A 2016; 1435:54-65. [DOI: 10.1016/j.chroma.2016.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
|
35
|
Li Z, Chen K, Guo MZ, Tang DQ. Two-dimensional liquid chromatography and its application in traditional Chinese medicine analysis and metabonomic investigation. J Sep Sci 2016; 39:21-37. [DOI: 10.1002/jssc.201500634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Kai Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Meng-zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Dao-quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| |
Collapse
|
36
|
Retention modelling in hydrophilic interaction chromatography. Anal Bioanal Chem 2015; 407:9135-52. [DOI: 10.1007/s00216-015-9079-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
|
37
|
Schure MR, Davis JM. Orthogonal separations: Comparison of orthogonality metrics by statistical analysis. J Chromatogr A 2015; 1414:60-76. [DOI: 10.1016/j.chroma.2015.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
|
38
|
Selectivity screening and subsequent data evaluation strategies in liquid chromatography: the example of 12 antineoplastic drugs. Anal Bioanal Chem 2015; 407:8475-85. [DOI: 10.1007/s00216-015-8994-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
39
|
West C, Khalikova MA, Lesellier E, Héberger K. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography. J Chromatogr A 2015; 1409:241-50. [DOI: 10.1016/j.chroma.2015.07.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/16/2015] [Accepted: 07/16/2015] [Indexed: 11/30/2022]
|
40
|
Gonzalo-Lumbreras R, Sanz-Landaluze J, Cámara C. Evaluation of chromatographic columns packed with semi- and fully porous particles for benzimidazoles separation. J Sep Sci 2015; 38:2394-402. [PMID: 25943946 DOI: 10.1002/jssc.201401054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 03/27/2015] [Accepted: 04/24/2015] [Indexed: 11/08/2022]
Abstract
The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow-bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re-optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re-optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications.
Collapse
Affiliation(s)
- Raquel Gonzalo-Lumbreras
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense Madrid, Ciudad Universitaria, Madrid, Spain
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense Madrid, Ciudad Universitaria, Madrid, Spain
| | - Carmen Cámara
- Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense Madrid, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
41
|
Flow rate dependent extra-column variance from injection in capillary liquid chromatography. J Chromatogr A 2014; 1380:38-44. [PMID: 25591400 DOI: 10.1016/j.chroma.2014.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 12/05/2014] [Indexed: 11/20/2022]
Abstract
Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used.
Collapse
|
42
|
Chetwynd AJ, David A, Hill EM, Abdul-Sada A. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1063-1069. [PMID: 25303397 DOI: 10.1002/jms.3426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/17/2014] [Accepted: 06/29/2014] [Indexed: 06/04/2023]
Abstract
Mass spectrometry (MS) profiling techniques are used for analysing metabolites and xenobiotics in biofluids; however, detection of low abundance compounds using conventional MS techniques is poor. To counter this, nanoflow ultra-high-pressure liquid chromatography-nanoelectrospray ionization-time-of-flight MS (nUHPLC-nESI-TOFMS), which has been used primarily for proteomics, offers an innovative prospect for profiling small molecules. Compared to conventional UHPLC-ESI-TOFMS, nUHPLC-nESI-TOFMS enhanced detection limits of a variety of (xeno)metabolites by between 2 and 2000-fold. In addition, this study demonstrates for the first time excellent repeatability and reproducibility for analysis of urine and plasma samples using nUHPLC-nESI-TOFMS, supporting implementation of this platform as a novel approach for high-throughput (xeno)metabolomics.
Collapse
Affiliation(s)
- Andrew J Chetwynd
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | | | |
Collapse
|
43
|
Perrenoud AGG, Farrell WP, Aurigemma CM, Aurigemma NC, Fekete S, Guillarme D. Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography. J Chromatogr A 2014; 1360:275-87. [DOI: 10.1016/j.chroma.2014.07.078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/27/2022]
|
44
|
Schmidt AH, Wess C. A QBD WITH DESIGN-OF-EXPERIMENTS APPROACH FOR DEVELOPMENT OF A STATE-OF-THE-ART UPLC PURITY METHOD FOR CARBAMAZEPINE. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.853312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Alexander H. Schmidt
- a Chromicent GmbH , Berlin , Germany
- b Freie Universität Berlin, Institute of Pharmacy , Berlin , Germany
| | | |
Collapse
|
45
|
Le Masle A, Angot D, Gouin C, D’Attoma A, Ponthus J, Quignard A, Heinisch S. Development of on-line comprehensive two-dimensional liquid chromatography method for the separation of biomass compounds. J Chromatogr A 2014; 1340:90-8. [DOI: 10.1016/j.chroma.2014.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/10/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
|
46
|
Vlčková H, Ježková K, Štětková K, Tomšíková H, Solich P, Nováková L. Study of the retention behavior of small polar molecules on different types of stationary phases used in hydrophilic interaction liquid chromatography. J Sep Sci 2014; 37:1297-307. [DOI: 10.1002/jssc.201400020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Hana Vlčková
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| | - Kateřina Ježková
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| | - Kateřina Štětková
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| | - Helena Tomšíková
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| | - Petr Solich
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry; Faculty of Pharmacy; Charles University in Prague; Hradec Králové Czech Republic
| |
Collapse
|
47
|
Gilar M, Jaworski A, McDonald TS. Solvent selectivity and strength in reversed-phase liquid chromatography separation of peptides. J Chromatogr A 2014; 1337:140-6. [DOI: 10.1016/j.chroma.2014.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/11/2014] [Accepted: 02/16/2014] [Indexed: 01/29/2023]
|
48
|
Schmidt AH, Stanic M, Molnár I. In silico robustness testing of a compendial HPLC purity method by using of a multidimensional design space build by chromatography modeling—Case study pramipexole. J Pharm Biomed Anal 2014; 91:97-107. [DOI: 10.1016/j.jpba.2013.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
49
|
Hettiarachchi K, Kong M, Yun A, Jacobsen JR, Xue Q. Development of an automated dual‐mode supercritical fluid chromatography and reversed‐phase liquid chromatography mass‐directed purification system for small‐molecule drug discovery. J Sep Sci 2014; 37:775-81. [DOI: 10.1002/jssc.201301366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - May Kong
- Department of Medicinal ChemistryTheravance, Inc South San Francisco CA USA
| | - Andersen Yun
- Department of Medicinal ChemistryTheravance, Inc South San Francisco CA USA
| | - John R. Jacobsen
- Department of Medicinal ChemistryTheravance, Inc South San Francisco CA USA
| | - Qifeng Xue
- Department of Medicinal ChemistryTheravance, Inc South San Francisco CA USA
| |
Collapse
|
50
|
Direct quantitative analysis of benzodiazepines, metabolites, and analogs in diluted human urine by rapid resolution liquid chromatography–tandem mass spectrometry. J Food Drug Anal 2013. [DOI: 10.1016/j.jfda.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|