1
|
Gritti F. Resolution limits of size exclusion chromatography columns identified from flow reversal and overcome by recycling liquid chromatography to improve the characterization of manufactured monoclonal antibodies. J Chromatogr A 2023; 1705:464219. [PMID: 37499525 DOI: 10.1016/j.chroma.2023.464219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
The flow reversal (FR) technique consists of reversing the flow direction along a chromatographic column. It is used to reveal the origin (such as poor column packing, active sites, or slow absorption/escape kinetics) for the resolution limit of 4.6 mm × 150 mm long columns packed with 1.7 μm 200 Å Bridge-Ethylene-Hybrid (BEHTM) Particles. These columns are used to separate manufactured monoclonal antibodies (mAb, ∼ 150 kDa) from their close impurities (or IdeS fragments, ∼ 100 kDa) by size exclusion chromatography (SEC). FR unambiguously demonstrates that the resolution limit of these SEC columns is primarily due to long-range flow velocity biases covering distances of at least 500 μm across the column diameter. This confirms the existence of center-to-wall flow heterogeneities which cause undesirable tailing for the mAb peak. Because the transverse dispersion coefficient (Dt=1.1 × 10-6 cm2/s) of mAbs across the column diameter is intrinsically low, the bandspreading of the mAb in a single flow direction is in part reversible upon reversing the flow direction. For the very same residence time in the column, the column efficiency is found to increase by +85% relative to that observed under conventional elution mode. The observed peak tailing of the mAb and its sub-units is not caused by active surface sites or by slow absorption/escape from the BEH Particles. Therefore, the most critical mAb impurities (hydrolytic degradation Fab/c and IdeS [Formula: see text] fragments) can only be successfully separated and quantified with acceptable accuracy by adopting alternate pumping recycling liquid chromatography (APRLC). APRLC enables the full baseline separation of the mAb and 100 kDa mAb fragments and partial separation of Fab/c and [Formula: see text] fragments after increasing the number of cycles to ten. It was made possible to accurately measure the relative abundances of the mAb (99.0 ± 0.1%), [Formula: see text] fragment (0.88 ± 0.03%), and Fab/c immunogenic fragment (0.13 ± 0.02%) in less than 45 min for a total mAb sample load of only 5 μg. Still, further improvements are needed to increase the sensitivity of the APRLC method and to reduce the solvent consumption by adopting narrow-bore 2.1 mm i.d. SEC columns.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA.
| |
Collapse
|
2
|
Gritti F. Automated High-Resolution Semi-Preparative Gradient Recycling Liquid Chromatography: Principles, Design, and Applications. LCGC EUROPE 2021. [DOI: 10.56530/lcgc.eu.fl3785e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A semi-preparative twin-column recycling liquid chromatography (TCRLC) process was extended from isocratic to gradient elution mode. The main separation challenge is when the sample mixture contains early, nearly coeluting, and late impurities, all at the same time. To further improve classical isocratic TCRLC, the gradient TCRLC (GTCRLC) process was implemented with a 2-position 4-port valve in order to better shave the targeted sample from all these impurities. Prior to fully resolving the target compound(s) from the closest impurities by classical isocratic TCRLC, the added valve enabled full elimination by gradient elution mode of not only the early impurities but also any highly retained late impurities that could contaminate the collected fractions of the target compound(s). This GTCRLC process was entirely automated regarding the initial gradient applied, the recycling conditions, and the actuation times of the two valves. The GTCRLC process was applied for the isolation of a single polycyclic aromatic hydrocarbon (PAH), chrysene, present in a complex PAH mixture. In addition, the GTCRLC process was successfully applied to clean vitamins D2 and D3 from a milk extract and to baseline resolve them.
Collapse
|
3
|
Rebirth of recycling liquid chromatography with modern chromatographic columns : Extension to gradient elution. J Chromatogr A 2021; 1653:462424. [PMID: 34340057 DOI: 10.1016/j.chroma.2021.462424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Twin column recycling semi-preparative liquid chromatography (TCRLC) is revived to prepare small amount (∼ 1 mg) of a pure targeted compound, which cannot be isolated by conventional preparative liquid chromatography. In this work, TCRLC is extended to gradient elution. The first step of this modified process consists of a gradient step, which eliminates both early and late impurities. If not discarded, some late impurities could echo during the second isocratic recycling step of the process and compromise the purity level required for the targeted compound. Additionally, the entire gradient TCRLC (GTCRLC) process is automated regarding the eluent composition programmed and the actuation times of two valves: one two-position four-port divert valve enables to shave the targeted compound from early and late impurities during the initial gradient step. The second two-position six-port recycling valve ensures the complete baseline resolution between the band of the targeted compound and those of the closest impurities, which are not fully eliminated after the initial gradient step. The automation of the whole GTCRLC process is achieved by running four preliminary scouting gradient runs (at four different relative gradient times, tgt0= 2, 6, 18, and 54, where t0 is the hold-up column time) for the accurate determination of the thermodynamics (lnk versus φ plots of the retention factor as a function of the mobile phase composition) of the first impurity, the targeted compound(s), and of the last impurity. The automated GTCRLC process was successfully applied for the isolation of a polycyclic aromatic hydrocarbon (PAH), chrysene, from a complex mixture of PAHs containing two nearly co-eluting impurities (benzo[a]anthracene and triphenylene) and nine other early/late impurities (sample volume injected: 1 mL, 7.8 mm × 150 mm Sunfire-C18 column, acetonitrile/water eluent mixtures, T= 55 ∘C, 20 cycles, baseline separation in less than two hours). Additionally, the GTCRLC process is advantageously used to isolate and baseline separate the vitamins D2 and D3 initially present in a milk extract mixture (0.3 mL sample injection volume, 7.8 mm × 150 mm Sunfire-C18 column, methanol/water eluent mixtures, T= 65 ∘C, 14 cycles needed in 1.5 hours). These results open promising avenues toward an effective preparation of unknown targeted compounds before further physico-chemical characterization and unambiguous identification.
Collapse
|
4
|
Chibério AS, Santos TP, Ribeiro RPPL, Mota JPB. Batch chromatography with recycle lag. I-Concept and design. J Chromatogr A 2020; 1623:461199. [PMID: 32505288 DOI: 10.1016/j.chroma.2020.461199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
This is the first of a two-part study in which we explore the concept of batch chromatography with recycle lag, concluding with the design, construction, and experimental validation of a prototype that embodies the physical realization of this concept. Moreover, the apparatus is simple to set up in particular in view of large-scale applications. Here the theory behind batch chromatography with recycle lag is revisited and extended, with emphasis on the mathematical formulation and procedure for deriving the single-column batch analogue of any variant of multicolumn simulated countercurrent chromatography. By resorting to selected examples, namely GE Healthcare Bio-science's three-column periodic countercurrent chromatography, Novasep's sequential multicolumn chromatography, and a few hypothetical multicolumn processes, we discuss how the theory can be operationalized. Finally, we conclude by describing the design of a device or apparatus-an eluate recycling device (ERD)-to physically realize the proposed concept. The ERD implements an approximate "first in, first out" method for organizing and manipulating the to-be-recycled fractions of eluate collected from the chromatography column, where the oldest (first) amount fluid, or 'head' of the fraction, is the first to exit and be recycled to the column.
Collapse
Affiliation(s)
- Abimaelle S Chibério
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Tiago P Santos
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Rui P P L Ribeiro
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - José P B Mota
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
5
|
Synthesis and enantiospecific analysis of enantiostructured triacylglycerols containing n-3 polyunsaturated fatty acids. Chem Phys Lipids 2020; 231:104937. [PMID: 32603657 DOI: 10.1016/j.chemphyslip.2020.104937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022]
Abstract
The stereospecific structure of triacylglycerols (TAGs) affects the bioavailability of fatty acids. Lack of enantiopure reference compounds and effective enantiospecific methods have hindered the stereospecific analysis of individual TAGs. Twelve novel enantiostructured AAB-type TAGs were synthesized containing one of the three n-3 polyunsaturated fatty acid: α-linolenic acid (ALA), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) in sn-1 or sn-3 position. These compounds formed six enantiomer pairs, which were separated with recycling high-performance liquid chromatography using chiral columns and UV detection. The chromatographic retention behavior of the enantiomers and the stereospecific elution order were studied. The enantiomer with an n-3 PUFA in the sn-1 position eluted faster than the enantiomer with the n-3 PUFA in the sn-3 position, regardless of the carbon chain length and number of double bonds of the PUFA. TAG enantiomers containing DHA exhibited highly different retention on the chiral column and were separated after the first column, whereas recycling was needed to separate the enantiomer pairs containing ALA or EPA. The system using two identical columns and one mobile phase, without sample derivatization, proved to be very effective also for peak purity assessment, confirming the enantiopurity of the synthesized structured TAGs being higher than 98 % (96 % ee).
Collapse
|
6
|
Chibério AS, Policarpo GFM, Antunes JC, Santos TP, Ribeiro RPPL, Mota JPB. Batch chromatography with recycle lag. II-Physical realization and experimental validation. J Chromatogr A 2020; 1623:461211. [PMID: 32505295 DOI: 10.1016/j.chroma.2020.461211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022]
Abstract
This is the second of a two-part study in which we explore the concept of batch chromatography with recycle lag, concluding with the design, construction, and experimental validation of a prototype-an eluate recycling device (ERD)-that embodies the physical realization of this concept. The ERD implements an approximate "first in, first out" method of organizing and manipulating the to-be-recycled fractions of eluate collected from the chromatography column, where the oldest (first) amount fluid, or 'head' of the fraction, is the first to exit and be recycled back to the column. Moreover, the apparatus is simple to set up in particular in view of large-scale applications. Here we detail the construction of the ERD and assembly of a setup to interconnect the ERD and a chromatography column. Through the coordinated operation of two-way valves and two-position six-port switching valves it is possible to implement a diverse set of configurations or operating modes interconnecting the chromatography column and the ERD. The setup is validated experimentally with success using the separation of a nucleoside mixture by reversed phase chromatography as a model problem. It is also shown that by redesigning the fluid distributor using 3D printing technology the ERD performance can be improved.
Collapse
Affiliation(s)
- Abimaelle S Chibério
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Gonçalo F M Policarpo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - João C Antunes
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Tiago P Santos
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Rui P P L Ribeiro
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - José P B Mota
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
7
|
Minarik M, Franc M, Minarik M. High performance liquid chromatography column efficiency enhancement by zero dead volume recycling and practical approach using park and recycle arrangement. J Chromatogr A 2018; 1554:1-7. [PMID: 29706399 DOI: 10.1016/j.chroma.2018.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 11/26/2022]
Abstract
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling.
Collapse
Affiliation(s)
- Marek Minarik
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Sciences, Charles University, Albertov 6, CZ - 128 43 Prague, Czech Republic
| | - Martin Franc
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic.
| | - Milan Minarik
- Watrex Praha s.r.o., Drnovska 1112/60, CZ - 161 00 Prague, Czech Republic
| |
Collapse
|
8
|
Gritti F, Leal M, McDonald T, Gilar M. Ideal versus real automated twin column recycling chromatography process. J Chromatogr A 2017; 1508:81-94. [DOI: 10.1016/j.chroma.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|
9
|
Kalpio M, Nylund M, Linderborg KM, Yang B, Kristinsson B, Haraldsson GG, Kallio H. Enantioselective chromatography in analysis of triacylglycerols common in edible fats and oils. Food Chem 2015; 172:718-24. [DOI: 10.1016/j.foodchem.2014.09.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
|
10
|
Zou X, Gao M, Liu D, Zhang X, Xiu Z, Xiao H. A novel preparative liquid chromatograph for repetitive enrichment and purification of low-abundance compounds. J Chromatogr A 2014; 1351:90-5. [DOI: 10.1016/j.chroma.2014.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/16/2022]
|
11
|
Abstract
Natural compounds occur as various isomeric or closely related structures in biological matrices. These compounds are difficult to separate from the complex mixtures, and hence, the need for effective and innovative separation techniques arises. Recycle HPLC allows the recycling of sample, in part or full, and increases the separation efficiency of the process while keeping the peak dispersion to a minimum. Recycling in an HPLC system has been used in the isolation and purification of different types of natural products including enantiomers, diastereomers, epimers, positional isomers, and structurally related or unrelated compounds having similar retention characteristics. The present paper overviews the development of instrumentation and setup of recycle HPLC and its applications in the separation of natural products.
Collapse
|
12
|
Groskreutz SR, Swenson MM, Secor LB, Stoll DR. Selective comprehensive multi-dimensional separation for resolution enhancement in high performance liquid chromatography. Part I: Principles and instrumentation. J Chromatogr A 2012; 1228:31-40. [DOI: 10.1016/j.chroma.2011.06.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
13
|
Optimization of steady state recycling parameters utilizing polarimetry in chiral separations. J Chromatogr A 2008; 1178:56-9. [DOI: 10.1016/j.chroma.2007.11.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/26/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022]
|