1
|
Furno L, Combès A, Thiébaut D, Méré A, Passade‐Boupat N, Vial J. Liquid Chromatography Column Screening for the Analysis of Corrosion Inhibitor Molecules Using Derringer Desirability Functions. J Sep Sci 2024; 47:e70046. [PMID: 39654022 PMCID: PMC11628455 DOI: 10.1002/jssc.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
Corrosion inhibitors (CIs) are extensively employed in the oil and gas industry, yet their analysis remains a challenge. To develop a suitable liquid chromatography method for a wide array of CIs, a column screening was conducted. Nine different chromatographic conditions were tested across eight RPLC and mixed-mode columns (Accucore C18, CORTECS Shield RP18, Acquity HSS T3, Acquity Premier HSS T3, Accucore 150-C4, Accucore PFP, Synergi Polar RP, and Acclaim WCX-1). Seven model mixtures representative of CIs, which included quaternary ammoniums, imidazolines, and phosphoric esters, were considered to probe the columns. Each column exhibited unique analytical performances, peak shape, and separation profiles. To find a compromise to analyze all the mixtures with one method, Derringer desirability functions were used. Shielding of residual silanols proved to be a critical factor. The trifunctional grafting of the Acquity HSS T3 columns appeared to be a promising strategy to minimize residual silanol effects. However, it was the Premier technology, which protects the column's inner walls and frits against parasitic adsorption, which delivered the best overall results. Based on the desirability study, the Acquity Premier HSS T3 column was selected and the gradient was optimized, which enabled the separation of the molecules present in the model mixtures.
Collapse
Affiliation(s)
- L. Furno
- Laboratoire Sciences AnalytiquesBioanalytiques et Miniaturisation (LSABM), UMR CBI 8231 CNRS ‐ ESPCI Paris PSLParisFrance
- TotalEnergies, OneTechPôle d'Etudes et Recherche de Lacq, BP 47LacqFrance
| | - A. Combès
- Laboratoire Sciences AnalytiquesBioanalytiques et Miniaturisation (LSABM), UMR CBI 8231 CNRS ‐ ESPCI Paris PSLParisFrance
| | - D. Thiébaut
- Laboratoire Sciences AnalytiquesBioanalytiques et Miniaturisation (LSABM), UMR CBI 8231 CNRS ‐ ESPCI Paris PSLParisFrance
| | - A. Méré
- TotalEnergies, OneTechPôle d'Etudes et Recherche de Lacq, BP 47LacqFrance
| | | | - J. Vial
- Laboratoire Sciences AnalytiquesBioanalytiques et Miniaturisation (LSABM), UMR CBI 8231 CNRS ‐ ESPCI Paris PSLParisFrance
| |
Collapse
|
2
|
Wang Z, Tian L, Xiao Y, Zhao M, Chang Y, Zhou Y, Liu S, Zhao H, Xiu Y. Quantitative and Differential Analysis between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. Using HPLC-MS and GC-MS Coupled with Multivariate Statistical Analysis. Molecules 2023; 28:5630. [PMID: 37570602 PMCID: PMC10419597 DOI: 10.3390/molecules28155630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. have different clinical efficacies, with the former typically used to treat typhoid fever and the latter mainly used to clear liver heat. The differences in their clinical efficacy are closely related to their complex chemical composition, especially the active components. In this study, the saponins and volatile oils in two varieties of Radix Bupleuri grown in different regions were extracted and analyzed using high-performance liquid chromatography (HPLC) and gas chromatography coupled with mass spectrometry (MS), and the absolute contents of five saikosaponins were accurately quantified using an established HPLC-MS method in the multiple reaction monitoring mode. Multivariate statistical analysis was performed to reveal the difference in the active components between the two varieties. The saikosaponin content was significantly affected by variety and growing region, with all five saikosaponins being significantly higher in Bupleurum chinense DC. than in Bupleurum scorzonerifolium Willd. The results of principal component analysis and hierarchical cluster analysis show a clear distinction between the two varieties in terms of both saponins and volatile oils. Twenty-one saponins, including saikosaponin b2 and b1, and fifty-two volatile oils, including 2-tetradecyloxirane and chloromethyl cyanide, were screened and identified as differential compounds contributing to the significant difference between the two varieties. These compounds may also be responsible for the difference in clinical efficacy between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. All the results suggest that the accumulation and diversity of active components in Radix Bupleuri are significantly affected by the variety. In contrast to previous reports, this study provides the absolute contents of five saikosaponins in Radix Bupleuri of different varieties and reduces the influence of the growing region on the analytical results by collecting samples from different regions. The results of this study may provide a reference for the identification and quality evaluation of different varieties of Radix Bupleuri.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.W.); (L.T.); (Y.X.); (M.Z.); (Y.C.); (Y.Z.); (S.L.)
| | - Yang Xiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (Z.W.); (L.T.); (Y.X.); (M.Z.); (Y.C.); (Y.Z.); (S.L.)
| |
Collapse
|
3
|
Gély CA, Picard-Hagen N, Chassan M, Garrigues JC, Gayrard V, Lacroix MZ. Contribution of Reliable Chromatographic Data in QSAR for Modelling Bisphenol Transport across the Human Placenta Barrier. Molecules 2023; 28:500. [PMID: 36677565 PMCID: PMC9863378 DOI: 10.3390/molecules28020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as BPAF, BPAP, BPB, BPF, BPP, BPS, and BPZ. However, these alternatives are under surveillance for potential endocrine disruption, particularly during the critical period of fetal development. Despite their structural analogies, these BPs differ greatly in their placental transport efficiency. For predicting the fetal exposure of this important class of emerging contaminants, quantitative structure-activity relationship (QSAR) studies were developed to model and predict the placental clearance indices (CI). The most usual input parameters were molecular descriptors obtained by modelling, but for bisphenols (BPs) with structural similarities or heteroatoms such as sulfur, these descriptors do not contrast greatly. This study evaluated and compared the capacity of QSAR models based either on molecular or chromatographic descriptors or a combination of both to predict the placental passage of BPs. These chromatographic descriptors include both the retention mechanism and the peak shape on columns that reflect specific molecular interactions between solute and stationary and mobile phases and are characteristic of the molecular structure of BPs. The chromatographic peak shape such as the asymmetry and tailing factors had more influence on predicting the placental passage than the usual retention parameters. Furthermore, the QSAR model, having the best prediction capacity, was obtained with the chromatographic descriptors alone and met the criteria of internal and cross validation. These QSAR models are crucial for predicting the fetal exposure of this important class of emerging contaminants.
Collapse
Affiliation(s)
- Clémence A. Gély
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Malika Chassan
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Jean-Christophe Garrigues
- Molecular Interactions and Chemical and Photochemical Reactivity Laboratory (IMRCP), University of Toulouse, 31062 Toulouse, France
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Marlène Z. Lacroix
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| |
Collapse
|
4
|
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017; 1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
Abstract
With an enormous growth in the application of hydrophilic interaction liquid chromatography (HILIC), there has also been significant progress in HILIC method development. HILIC is a chromatographic method that utilises hydro-organic mobile phases with a high organic content, and a hydrophilic stationary phase. It has been applied predominantly in the determination of small polar compounds. Theoretical studies in computer-aided modelling tools, most importantly the predictive, quantitative structure retention relationship (QSRR) modelling methods, have attracted the attention of researchers and these approaches greatly assist the method development process. This review focuses on the application of computer-aided modelling tools in understanding the retention mechanism, the classification of HILIC stationary phases, prediction of retention times in HILIC systems, optimisation of chromatographic conditions, and description of the interaction effects of the chromatographic factors in HILIC separations. Additionally, what has been achieved in the potential application of QSRR methodology in combination with experimental design philosophy in the optimisation of chromatographic separation conditions in the HILIC method development process is communicated. Developing robust predictive QSRR models will undoubtedly facilitate more application of this chromatographic mode in a broader variety of research areas, significantly minimising cost and time of the experimental work.
Collapse
Affiliation(s)
- Maryam Taraji
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia.
| | - Ruth I J Amos
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Mohammad Talebi
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Roman Szucs
- Pfizer Global Research and Development, CT13 9NJ, Sandwich, UK
| | - John W Dolan
- LC Resources, 1795 NW Wallace Rd., McMinnville, OR 97128, USA
| | | |
Collapse
|
5
|
Leonardo T, Farhi E, Boisson AM, Vial J, Cloetens P, Bohic S, Rivasseau C. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis. Metallomics 2014; 6:316-29. [PMID: 24394991 DOI: 10.1039/c3mt00281k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the nucleus at high concentration. Exposure to low concentrations of cobalt or silver did not alter the localization nor the concentration of endogenous elements within the cells. To our knowledge, this is the first report on element co-localization and segregation at the sub-cellular level in micro-algae by means of synchrotron nano X-ray fluorescence spectroscopy.
Collapse
Affiliation(s)
- T Leonardo
- CEA, IRTSV, Laboratoire de Physiologie Cellulaire Végétale, F-38054 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Ruta J, Boccard J, Cabooter D, Rudaz S, Desmet G, Veuthey JL, Guillarme D. Method development for pharmaceutics: Some solutions for tuning selectivity in reversed phase and hydrophilic interaction liquid chromatography. J Pharm Biomed Anal 2012; 63:95-105. [DOI: 10.1016/j.jpba.2012.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 02/02/2023]
|
7
|
O'Sullivan GP, Scully NM, Glennon JD. Polar-Embedded and Polar-Endcapped Stationary Phases for LC. ANAL LETT 2010. [DOI: 10.1080/00032711003653973] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Van Dorpe S, Vergote V, Pezeshki A, Burvenich C, Peremans K, De Spiegeleer B. Hydrophilic interaction LC of peptides: Columns comparison and clustering. J Sep Sci 2010; 33:728-39. [DOI: 10.1002/jssc.200900476] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Okusa K, Suita Y, Otsuka Y, Tahara M, Ikegami T, Tanaka N, Ohira M, Takahashi M. Test compounds for detecting the silanol effect on the elution of ionized amines in reversed-phase LC. J Sep Sci 2010; 33:348-58. [DOI: 10.1002/jssc.200900760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Atapattu SN, Poole CF. Factors Affecting the Interpretation of Selectivity on Synergi Reversed-Phase Columns. Chromatographia 2009. [DOI: 10.1365/s10337-009-1431-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Haghedooren E, Janssens T, Nijs R, Park SK, Farkas E, Dragovic S, Noszál B, Hoogmartens J, Adams E. Selecting a Suitable LC Column for Pharmaceutical Separations using a Column Characterisation System. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902766553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Erik Haghedooren
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Tom Janssens
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Ruben Nijs
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Soo Kyung Park
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Edit Farkas
- b Semmelweis University, Department of Pharmaceutics , Budapest, Hungary
| | - Sanja Dragovic
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Béla Noszál
- c Semmelweis University, Department of Pharmaceutical Chemistry, Research Group for Narcotic Drugs and Dopings, Hungarian Academy of Sciences , Budapest, Hungary
| | - Jos Hoogmartens
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Erwin Adams
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| |
Collapse
|
12
|
Shape selectivity in embedded polar group stationary phases for liquid chromatography. Anal Bioanal Chem 2009; 394:285-91. [DOI: 10.1007/s00216-009-2649-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
|
13
|
Horak J, Lindner W. Contribution of sulfonyl–aromatic and sulfonic acid–aromatic interactions in novel sulfonyl/sulfonic acid-embedded reversed phase materials. J Chromatogr A 2008; 1191:141-56. [DOI: 10.1016/j.chroma.2007.12.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/19/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
|
14
|
Haghedooren E, Kóczián K, Huang S, Dragovic S, Noszál B, Hoogmartens J, Adams E. Finding an Alternative Column for the Separation of Antibiotics on XTerra RP using a Column Classification System. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802000509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Erik Haghedooren
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Kristóf Kóczián
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
- b Department of Pharmaceutical Chemistry , Semmelweis University, Research Group for Narcotic Drugs and Dopings, Hungarian Academy of Sciences , Budapest, Hungary
| | - Shan Huang
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Sanja Dragovic
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Béla Noszál
- b Department of Pharmaceutical Chemistry , Semmelweis University, Research Group for Narcotic Drugs and Dopings, Hungarian Academy of Sciences , Budapest, Hungary
| | - Jos Hoogmartens
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| | - Erwin Adams
- a Katholieke Universiteit Leuven, Laboratorium voor Farmaceutische Analyse , Leuven, Belgium
| |
Collapse
|
15
|
Abstract
The properties of stationary phases and their characterization methods are reviewed. New and significant developments have occurred in the last few years, and new methods for stationary phase characterization have become available. The characterization methods are discussed, and the differences between the different methods are pointed out. In addition, method development approaches are reviewed, with special emphasis on recent developments that employ multiple parameters in parallel. Also, the renewed interest of temperature as a tool in method development is surveyed.
Collapse
Affiliation(s)
- Uwe D Neue
- Waters Corporation, Milford, MA 01757, USA.
| |
Collapse
|