1
|
Jiang D, Wu D, Zhou G, Dai Y, Yang J, Jin Y, Fu Q, Ke Y, Liang X. An in-depth investigation of supercritical fluid chromatography retention mechanisms by evaluation of a series of specially designed alkylsiloxane-bonded stationary phases based on linear solvation energy relationship. J Chromatogr A 2023; 1690:463781. [PMID: 36638687 DOI: 10.1016/j.chroma.2023.463781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Fundamental research on supercritical fluid chromatography (SFC) has gained considerable interest, with many studies focusing on its retention mechanism based on the linear solvation energy relationship (LSER) model. In this paper, a series of alkylsiloxane-bonded stationary phases were specifically designed and synthesized, then evaluated using the mobile phase composed of CO2 with 10% (v/v) methanol. The study demonstrated the close relationship between the interactions (manner and magnitude) of stationary phases and the C-chain length, bonding density and the endcapping treatment. All C8 phases provide positive e, v and negative s, whose magnitude was regularly affected by bonding density. It was worth mentioning the non-endcapped C8 phases could provide H-bonding (positive a and b) by reducing the bonding density of the alkyl chain. Once it was endcapped, the interaction manner did not vary with bonding density adjustment. The non-endcapped C4 phases with higher bonding density could establish additional dispersion interaction (positive v). It can be seen that two synthesis strategies, 1) non-endcapped, long C-chain (C8) combined with low bonding density, and 2) non-endcapped, short C-chain (C4) combined with high bonding density, can obtain the alkylsiloxane-bonded stationary phases (C8-1 and C4-3) to provide both polar and dispersion interactions, showing different separation selectivity. Furthermore, the LSER model with ionic terms was applied to evaluate partial C8 columns, and its rationality was verified. The non-endcapped C8 showed great d+ values, which originated from the silanol groups. C8SCX also possessed a great d+ value due to the benzenesulfonic acid groups. A remarkable result showed that C8SAX exhibited prominent d- and d+ values simultaneously due to the combined effect of silanol and quaternary ammonium groups, which indicates the unique selectivity when separating ionic compounds. This study provides in-depth insights into the retention mechanism of alkylsiloxane-bonded stationary phases in SFC, as well as a reference for the design of SFC stationary phases.
Collapse
Affiliation(s)
- Dasen Jiang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Di Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guanghao Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yingping Dai
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Jin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Fu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinmiao Liang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Key Lab of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Liaoning Province, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Lesellier E, West C. Supercritical fluid chromatography for the analysis of natural dyes: From carotenoids to flavonoids. J Sep Sci 2021; 45:382-393. [PMID: 34633729 DOI: 10.1002/jssc.202100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/29/2022]
Abstract
Plant-derived natural dyes are used in a variety of formulated products, from food to cosmetics and pharmaceutics. In addition to their color, they also provide some bioactivity. While they are mostly analyzed with high-performance liquid chromatography, supercritical fluid chromatography was also employed for several dye families, mostly for carotenoids and chlorophylls, and more recently for anthraquinones and flavonoids. These supercritical fluid chromatography methods are described in this review. Because the dyes have different structures and structural variations (polarity, isomers, etc.), the best chromatographic system to achieve their separation is not always the same. Hydrophobic stationary phases are preferred for the most hydrophobic dyes (chlorophylls and carotenoids) while polar stationary phases are preferred for the polar dyes (anthraquinones and flavonoids). Regarding the mobile phase composition, chlorophylls and carotenoids are best eluted with moderate proportions of co-solvent in CO2 (about 40%), while the most polar glycosylated flavonoids require higher proportions of co-solvent and acidic additives. Because dyes are colorful, ultraviolet-visible detection is often sufficient, while mass spectrometry offers additional structural information. Furthermore, fundamental information can also be gained through chromatographic analysis of dyes: either solubility in supercritical fluids, in view of their extraction, or retention behavior providing an understanding of stationary phase properties.
Collapse
Affiliation(s)
- Eric Lesellier
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| | - Caroline West
- Institut de Chimie Organique et Analytique, Centre National de la Recherche Scientifique, Unité mixte de recherche, 7311, University of Orleans, Orleans, France
| |
Collapse
|
3
|
Gros Q, Molineau J, Noireau A, Duval J, Bamba T, Lesellier E, West C. Characterization of stationary phases in supercritical fluid chromatography including exploration of shape selectivity. J Chromatogr A 2021; 1639:461923. [PMID: 33524935 DOI: 10.1016/j.chroma.2021.461923] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/09/2021] [Accepted: 01/16/2021] [Indexed: 12/01/2022]
Abstract
Achiral packed column supercritical fluid chromatography (SFC) has shown an important regain of interest in academic and industrial laboratories in the recent years. In relation to this increased concern, major instrument manufacturers have designed some stationary phases specifically for SFC use. SFC stationary phases have been widely examined over the last two decades, based on the use of linear solvation energy relationships (LSER), which relate analyte retention to its properties and to the interaction capabilities of the chromatographic system. The method provides some understanding on retention mechanisms (normal phase, reversed phase or mixed-mode) and the possibility to compare stationary phases on a rational basis, especially through a spider diagram providing a visual classification. The latter can be used as a primary tool to select complementary stationary phases to be screened for any separation at early stages of method development, before optimization steps. In this context, the characterization of the 14 columns from the Shim-pack UC series (Shimadzu Corporation, Kyoto, Japan), which are dedicated to SFC and more broadly to unified chromatography (UC), was performed, using the LSER methodology. As in previous works, seven descriptors, including five Abraham descriptors (E, S, A, B, V) and two descriptors describing positive and negative charges (D- and D+) were first employed to describe interactions with neutral and charged analytes. Secondly, two more descriptors were introduced, which were previously employed solely for the characterization of enantioselective systems and expressing shape features of the analytes (flexibility F and globularity G). They brought additional insight into the retention mechanisms, showing how spatial insertion of the analytes in some stationary phases is contributing to shape separation capabilities and how folding possibilities in flexible molecules is unfavorable to retention in other stationary phases.
Collapse
Affiliation(s)
- Quentin Gros
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France; Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Jeremy Molineau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Angeline Noireau
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Johanna Duval
- Shimadzu France, Le luzard 2, Bat A, Bd Salvador Allende Noisiel, 77448 Marne-la-Vallée, France
| | - Takeshi Bamba
- Kyushu University, Division of Metabolomics, Medical Institute of Bioregulation, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eric Lesellier
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France
| | - Caroline West
- University of Orleans, ICOA, CNRS UMR 7311; Pôle de chimie rue de Chartres - BP 6759 45067, Orléans Cedex 2, France.
| |
Collapse
|
4
|
Abrahamsson V, Henderson BL, Zhong F, Lin Y, Kanik I. Online supercritical fluid extraction and chromatography of biomarkers analysis in aqueous samples for in situ planetary applications. Anal Bioanal Chem 2019; 411:8091-8101. [DOI: 10.1007/s00216-019-02189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
5
|
Hirose T, Keck D, Izumi Y, Bamba T. Comparison of Retention Behavior between Supercritical Fluid Chromatography and Normal-Phase High-Performance Liquid Chromatography with Various Stationary Phases. Molecules 2019; 24:molecules24132425. [PMID: 31269632 PMCID: PMC6650800 DOI: 10.3390/molecules24132425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
The retention behavior of a wide variety of stationary phases was compared in supercritical fluid chromatography (SFC) and normal-phase high-performance liquid chromatography (NP-HPLC). We also attempted to elucidate the retention behavior in SFC by investigating the selectivity of the different stationary phases. SFC separation conditions with polar stationary phases, such as silica gel (SL) and diol (Diol) phases, operate via adsorptions that include hydrophilic and ionic interactions similar to those in NP-HPLC. Moreover, non-polar stationary phases, such as pentabromophenyl (PBr), pyrenylethyl (PYE), and octadecyl (C18), could be used despite the non-polar mobile phase conditions, because the dispersion and π-π interactions were stronger in SFC than in HPLC. These results reflect the selectivity of the stationary phase and its retention factor, thus providing useful information for the selection of appropriate stationary phases for particular analytes.
Collapse
Affiliation(s)
- Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi 617-0004 17, Kaide-cho, Muko-shi, Kyoto, Japan.
| | - Daniel Keck
- Nacalai Tesque, Inc., Ishibashi 617-0004 17, Kaide-cho, Muko-shi, Kyoto, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Maidashi 812-8582 3-1-1, Higashi-ku, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Maidashi 812-8582 3-1-1, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. J Chromatogr A 2019; 1593:127-134. [DOI: 10.1016/j.chroma.2019.01.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
|
7
|
A chiral unified chromatography–mass spectrometry method to analyze free amino acids. Anal Bioanal Chem 2019; 411:4909-4917. [DOI: 10.1007/s00216-019-01783-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/31/2019] [Accepted: 03/15/2019] [Indexed: 11/27/2022]
|
8
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
9
|
Lesellier E, West C. Σpider diagram: A universal and versatile approach for system comparison and classification. Part 2: Stationary phase properties. J Chromatogr A 2018; 1574:71-81. [DOI: 10.1016/j.chroma.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/28/2018] [Accepted: 09/02/2018] [Indexed: 01/10/2023]
|
10
|
West C, Lemasson E, Bertin S, Hennig P, Lesellier E. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography. J Chromatogr A 2016; 1440:212-228. [DOI: 10.1016/j.chroma.2016.02.052] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/17/2022]
|
11
|
Sykora D, Vozka J, Tesarova E. Chromatographic methods enabling the characterization of stationary phases and retention prediction in high-performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 2015; 39:115-31. [DOI: 10.1002/jssc.201501023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/08/2015] [Accepted: 10/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- David Sykora
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
| | - Jiri Vozka
- Department of Analytical Chemistry; University of Chemistry and Technology; Prague Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Eva Tesarova
- Department of Physical and Macromolecular Chemistry, Faculty of Science; Charles University in Prague; Prague Czech Republic
| |
Collapse
|
12
|
Comparison of high-performance liquid chromatography and supercritical fluid chromatography using evaporative light scattering detection for the determination of plasticizers in medical devices. J Chromatogr A 2015; 1417:104-15. [DOI: 10.1016/j.chroma.2015.09.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/03/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
|
13
|
West C, Lemasson E, Khater S, Lesellier E. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography. J Chromatogr A 2015; 1412:126-38. [DOI: 10.1016/j.chroma.2015.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/29/2022]
|
14
|
Delahaye S, Lynen F. Implementing Stationary-Phase Optimized Selectivity in Supercritical Fluid Chromatography. Anal Chem 2014; 86:12220-8. [DOI: 10.1021/ac503313j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sander Delahaye
- Separation Science Group,
Department of Organic and Macromolecular Chemistry, Universiteit Gent, Krijgslaan
281 S4-bis, B-9000 Gent, Belgium
| | - Frédéric Lynen
- Separation Science Group,
Department of Organic and Macromolecular Chemistry, Universiteit Gent, Krijgslaan
281 S4-bis, B-9000 Gent, Belgium
| |
Collapse
|
15
|
Ligor M, Kováčová J, Gadzała-Kopciuch RM, Studzińska S, Bocian S, Lehotay J, Buszewski B. Study of RP HPLC Retention Behaviours in Analysis of Carotenoids. Chromatographia 2014; 77:1047-1057. [PMID: 25089049 PMCID: PMC4111857 DOI: 10.1007/s10337-014-2657-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 11/06/2022]
Abstract
For determination of selected carotenoids, various types of columns for high-performance liquid chromatography (HPLC) with different properties have been used. The characteristics of the laboratory-used packing material containing monomeric alkyl-bonded phases (C18, C30) and phenyl as well as phenyl-hexyl stationary phases were studied. The retention data of the examined compounds were used to determine the hydrophobicity and silanol activity of stationary phases applied in the study. The presence of the polar and carboxyl groups in the structure of the bonded ligand strongly influences the polarity of the stationary phase. Columns were compared according to methylene selectivity using a series of benzene homologues. The measurements were done using a methanol-water mobile phase. Knowledge of the properties of the applied stationary phase provided the possibility to predict the RP HPLC retention behaviours in analysis of carotenoids including lutein, lycopene and β-carotene. The composition of the mobile phase, the addition of triethylamine and the type of stationary phase had been taken into account in designing the method of carotenoid identification. Also a monolithic column characterised by low hydrodynamic resistance, high porosity and high permeability was applied. The presented results show that the coverage density of the bonded ligands on silica gel packings and length of the linkage strongly influence the carotenoid retention behaviours. In our study, the highest retention parameters for lutein, lycopene and β-carotene were observed for C30 and C18 stationary phase. This effect corresponds with pore size of column packing greater than 100 Å and carbon content higher than 11 %.
Collapse
Affiliation(s)
- M. Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
| | - J. Kováčová
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
- Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovak Republic
| | - R. M. Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
| | - S. Studzińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
| | - Sz. Bocian
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
| | - J. Lehotay
- Department of Chemistry, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovak Republic
| | - B. Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin Street 7, 87-100, Toruń, Poland
| |
Collapse
|
16
|
Comparative assessment of achiral stationary phases for high throughput analysis in supercritical fluid chromatography. J Chromatogr A 2014; 1332:73-81. [DOI: 10.1016/j.chroma.2014.01.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 11/21/2022]
|
17
|
Khater S, West C, Lesellier E. Characterization of five chemistries and three particle sizes of stationary phases used in supercritical fluid chromatography. J Chromatogr A 2013; 1319:148-59. [DOI: 10.1016/j.chroma.2013.10.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Muteki K, Morgado JE, Reid GL, Wang J, Xue G, Riley FW, Harwood JW, Fortin DT, Miller IJ. Quantitative Structure Retention Relationship Models in an Analytical Quality by Design Framework: Simultaneously Accounting for Compound Properties, Mobile-Phase Conditions, and Stationary-Phase Properties. Ind Eng Chem Res 2013. [DOI: 10.1021/ie303459a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Muteki
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - James E. Morgado
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - George L. Reid
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jian Wang
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gang Xue
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Frank W. Riley
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey W. Harwood
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - David T. Fortin
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ian J. Miller
- Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
19
|
Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases. J Chromatogr A 2012; 1266:34-42. [DOI: 10.1016/j.chroma.2012.09.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/06/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022]
|
20
|
Poole CF. Stationary phases for packed-column supercritical fluid chromatography. J Chromatogr A 2012; 1250:157-71. [DOI: 10.1016/j.chroma.2011.12.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
|
21
|
Bamba T, Lee JW, Matsubara A, Fukusaki E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J Chromatogr A 2012; 1250:212-9. [PMID: 22709604 DOI: 10.1016/j.chroma.2012.05.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/21/2012] [Accepted: 05/21/2012] [Indexed: 11/29/2022]
Abstract
This review describes the usefulness of supercritical fluid chromatography (SFC) for the metabolic profiling of lipids. First, non-targeted lipid profiling by SFC/MS is described. The use of SFC/MS allows for high-throughput, exhaustive analysis of diverse lipids, and hence, this technique finds potential applications in lipidomics. Development of a polar lipid profiling method with trimethylsilyl (TMS) derivatization widens the scope of applicability of SFC/MS. SFC is a high-resolution technique that is suitable for non-targeted profiling aimed at the simultaneous analysis of many components. Next, targeted lipid profiling by SFC/MS is described. SFC is useful for the separation of lipids, such as carotenoids and triacylglycerols, which have numerous analogs with similar structures. In addition, SFC/MS shows the maximum efficiency for the target analysis of lipids in a biological sample that includes many matrices. Finally, a high-resolution, high-throughput analytical system based on SFC/MS is stated to be suitable for lipidomics because it is useful not only for the screening of lipid mixtures (as a fingerprint method) but also for the detailed profiling of individual components.
Collapse
Affiliation(s)
- Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
22
|
West C, Lesellier E. Comments on the paper “Characterization of stationary phases by a linear solvation energy relationship utilizing supercritical fluid chromatography” by C. R. Mitchell, N. J. Benz, S. Zhang. J Sep Sci 2011; 34:1917-24. [DOI: 10.1002/jssc.201100278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/11/2022]
|
23
|
Insights into chiral recognition mechanisms in supercritical fluid chromatography. I. Non-enantiospecific interactions contributing to the retention on tris-(3,5-dimethylphenylcarbamate) amylose and cellulose stationary phases. J Chromatogr A 2011; 1218:2019-32. [DOI: 10.1016/j.chroma.2010.11.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 11/06/2010] [Accepted: 11/29/2010] [Indexed: 11/23/2022]
|
24
|
Bonose-Crosnier de Bellaistre M, Nowik W, Tchapla A, Heron S. Separation of 9,10-anthraquinone derivatives: Evaluation of C18 stationary phases. J Chromatogr A 2011; 1218:778-86. [DOI: 10.1016/j.chroma.2010.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/01/2022]
|
25
|
Lesellier E. Additional studies on shape selectivity by using the carotenoid test to classify C18 bonded silica. J Chromatogr A 2011; 1218:251-7. [DOI: 10.1016/j.chroma.2010.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
|
26
|
Lesellier E. Extension of the C18 stationary phase knowledge by using the carotenoid test. J Sep Sci 2010; 33:3097-105. [DOI: 10.1002/jssc.201000239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
O'Sullivan GP, Scully NM, Glennon JD. Polar-Embedded and Polar-Endcapped Stationary Phases for LC. ANAL LETT 2010. [DOI: 10.1080/00032711003653973] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Affiliation(s)
- Larry T. Taylor
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061-0212
| |
Collapse
|
29
|
Farrell WP, Aurigemma CM, Masters-Moore DF. Advances in High Throughput Supercritical Fluid Chromatography. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902956394] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- William P. Farrell
- a Pfizer Global Research and Development, La Jolla Laboratories , San Diego, California, USA
| | - Christine M. Aurigemma
- a Pfizer Global Research and Development, La Jolla Laboratories , San Diego, California, USA
| | - David F. Masters-Moore
- a Pfizer Global Research and Development, La Jolla Laboratories , San Diego, California, USA
| |
Collapse
|
30
|
West C, Lesellier E. Orthogonal screening system of columns for supercritical fluid chromatography. J Chromatogr A 2008; 1203:105-13. [DOI: 10.1016/j.chroma.2008.07.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/04/2008] [Accepted: 07/08/2008] [Indexed: 11/30/2022]
|