1
|
Lam SF, Shang X, Ghosh R. Membrane-Based Hybrid Method for Purifying PEGylated Proteins. MEMBRANES 2023; 13:182. [PMID: 36837684 PMCID: PMC9966431 DOI: 10.3390/membranes13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
PEGylated proteins are usually purified using chromatographic methods, which are limited in terms of both speed and scalability. In this paper, we describe a microfiltration membrane-based hybrid method for purifying PEGylated proteins. Polyethylene glycol (or PEG) is a lower critical solution temperature polymer which undergoes phase transition in the presence of a lyotropic salt and forms micelle-like structures which are several microns in size. In the proposed hybrid method, the PEGylated proteins are first converted to their micellar form by the addition of a lyotropic salt (1.65 M ammonium sulfate). While the micelles are retained using a microfiltration membrane, soluble impurities such as the unmodified protein are washed out through the membrane. The PEGylated proteins thus retained by the membrane are recovered by solubilizing them by removing the lyotropic salt. Further, by precisely controlling the salt removal, the different PEGylated forms of the protein, i.e., mono-PEGylated and di-PEGylated forms, are fractionated from each other. Hybrid separation using two different types of microfiltration membrane devices, i.e., a stirred cell and a tangential flow filtration device, are examined in this paper. The membrane-based hybrid method for purifying PEGylated proteins is both fast and scalable.
Collapse
Affiliation(s)
| | | | - Raja Ghosh
- Correspondence: ; Tel.: +1-905-525-9140 (ext. 27415)
| |
Collapse
|
2
|
Wang SC, Teng XN, Wang XD, Dong YS, Yuan HL, Xiu ZL. Recycling reaction and separation for FACylation of loxenatide by trade-off between miscibility and immiscibility of reactants and product in methanol solution. J Chromatogr A 2022; 1676:463239. [PMID: 35709607 DOI: 10.1016/j.chroma.2022.463239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
The growing demand and scale of production for fatty acid chain modified (FACylated) polypeptide has sparked the interest in novel production technologies. In this study, a recycling reaction and separation process was proposed and applied to the fatty acid chain modification (FACylation) of loxenatide (LOX), which was based on the difference in solubility between reactants and FACylated product. Especially, the mixed PBS-Methanol (MeOH) solution was designed to meet the demands for FACylation of LOX as well as separation of FACylated LOX and residual modifier. In order to ensure the efficient FACylation, a mixed 10% PBS-90% MeOH (v/v) solution was chosen to provide a good miscibility for two reactants, LOX and N-tetradecylmaleimide (C14-MAL). On the other hand, the immiscibility between reactant (C14-MAL) and FACylated product (N-tetradecyl-Loxenatide (C14-LOX)) could realize the separation of C14-LOX when the MeOH concentration was less than 30% (v/v). Based on this strategy, the recycling reaction and separation process for FACylation of LOX was established by adjusting the MeOH concentration in the mixed solution. The reaction yield and recovery of C14-LOX exceeded 97% and 94%, and the excess reactant C14-MAL could be recycled with a recovery of more than 80%. Furthermore, after purification by reversed-phase chromatography, C14-LOX showed good pharmacokinetic and pharmacodynamic properties in vivo. This study will have great application prospects in industrial production of C14-LOX.
Collapse
Affiliation(s)
- Shu-Chang Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin-Nan Teng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xu-Dong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue-Sheng Dong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Heng-Li Yuan
- State Key Laboratory Cultivating Base for Long-acting Bio-medical Research of Jiangsu Province, Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang 222000, China
| | - Zhi-Long Xiu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Gerislioglu S, Adams SR, Wesdemiotis C. Characterization of singly and multiply PEGylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry. Anal Chim Acta 2017; 1004:58-66. [PMID: 29329709 DOI: 10.1016/j.aca.2017.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/27/2017] [Accepted: 12/03/2017] [Indexed: 10/18/2022]
Abstract
Conjugation of poly(ethylene glycol) (PEG) to protein drugs (PEGylation) is increasingly utilized in the biotherapeutics field because it improves significantly the drugs' circulatory half-life, solubility, and shelf-life. The activity of a PEGylated drug depends on the number, size, and location of the attached PEG chain(s). This study introduces a 2D separation approach, including reversed-phase ultra-performance liquid chromatography (RP-UPLC) and ion mobility mass spectrometry (IM-MS), in order to determine the structural properties of the conjugates, as demonstrated for a PEGylated insulin sample that was prepared by random amine PEGylation. The UPLC dimension allowed separation based on polarity. Electrospray ionization (ESI) of the eluates followed by in-source dissociation (ISD) truncated the PEG chains and created insulin fragments that provided site-specific information based on whether they contained a marker at the potential conjugation sites. Separation of the latter fragments by size and charge in the orthogonal IM dimension (pseudo-4D UPLC-ISD-IM-MS approach) enabled clear detection and identification of the positional isomers formed upon PEGylation. The results showed a highly heterogeneous mixture of singly and multiply conjugated isomers plus unconjugated material. PEGylation was observed on all three possible attachment sites (ε-NH2 of LysB29, A- and B-chain N-termini). Each PEGylation site was validated by analysis of the same product after disulfide bond cleavage, so that the PEGylated A- and B- chain could be individually characterized with the same pseudo-4D UPLC-ISD-IM-MS method.
Collapse
Affiliation(s)
- Selim Gerislioglu
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Scott R Adams
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
4
|
Xiaojiao S, Corbett B, Macdonald B, Mhaskar P, Ghosh R. Modeling and Optimization of Protein PEGylation. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shang Xiaojiao
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada
| | - Brandon Corbett
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada
| | - Brian Macdonald
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada
| | - Prashant Mhaskar
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S
4L7, Canada
| |
Collapse
|
5
|
Madadkar P, Nino SL, Ghosh R. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1035:1-7. [DOI: 10.1016/j.jchromb.2016.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 11/28/2022]
|
6
|
Ji J, Liu F, Hashim NA, Abed MM, Li K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2014.09.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
|
8
|
Niu J, Zhu Y, Xie Y, Song L, Shi L, Lan J, Liu B, Li X, Huang Z. Solid-phase polyethylene glycol conjugation using hydrophobic interaction chromatography. J Chromatogr A 2014; 1327:66-72. [PMID: 24411087 DOI: 10.1016/j.chroma.2013.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/11/2013] [Accepted: 12/14/2013] [Indexed: 02/04/2023]
Abstract
PEGylation is a widely applied approach to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. The current solution-phase PEGylation protocols often suffer from poor yield of homogeneously PEGylated bioactive products and hence fall short of being commercially attractive. To improve upon these techniques, here we developed a novel, solid-phase PEGylation methodology using a hydrophobic interaction chromatography (HIC) resin. Two variations of the HIC-based PEGylation are described that are tailored towards conjugation of proteins with hydrophobicity index above (lysozyme) and below (fibroblast growth factor 1, FGF-1) that of the mPEG-butyraldehyde (mPEG) chain used. In the case of lysozyme, the protein was first immobilized on the HIC, and the HIC-bound protein was then conjugated by passing over the column. In the case of FGF-1, the mPEG solution was first immobilized on the HIC, and the FGF-1 solution was then passed through the column. Circular dichroism (CD) spectroscopy demonstrated HIC-based PEGylation almost retained the secondary structures of proteins. Bioactivity assay showed that the recovery of activity of HIC-based PEGylated rhFGF-1 (i.e. 92%) was higher than that of liquid-phase PEGylated rhFGF-1 (i.e. 61%), while HIC-based PEGylated lysozyme showed the same activity recovery (i.e. 7%) as the liquid-phase PEGylated form. For specific proteins, the HIC-based solid-phase PEGylation maybe offer a more promising alternative than the current PEGylation methods and is expected to have a major impact in the area of protein-based therapeutics.
Collapse
Affiliation(s)
- Jianlou Niu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Yanlin Zhu
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yaoyao Xie
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lintao Song
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Lu Shi
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Junjie Lan
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bailin Liu
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
9
|
Shang X, Wittbold W, Ghosh R. Purification and analysis of mono-PEGylated HSA by hydrophobic interaction membrane chromatography. J Sep Sci 2013; 36:3673-81. [DOI: 10.1002/jssc.201300511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojiao Shang
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada
| | | | - Raja Ghosh
- Department of Chemical Engineering; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
10
|
Shang X, Yu D, Ghosh R. Integrated Solid-Phase Synthesis and Purification of PEGylated Protein. Biomacromolecules 2011; 12:2772-9. [PMID: 21657227 DOI: 10.1021/bm200541r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojiao Shang
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON Canada L8S 4L7
| | - Deqiang Yu
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON Canada L8S 4L7
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON Canada L8S 4L7
| |
Collapse
|
11
|
Bing NC, Tian Z, Jin HY, Wang LJ, Zhu LP, Xu ZL. Separation of Naproxen Enantiomers Using Hollow Fiber Molecularly Imprinted Membrane Chromatography. CHEM LETT 2011. [DOI: 10.1246/cl.2011.266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|